Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funimage Structured version   Visualization version   GIF version

Theorem funimage 35951
Description: Image𝐴 is a function. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funimage Fun Image𝐴

Proof of Theorem funimage
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4116 . . . 4 ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))) ⊆ (V × V)
2 df-rel 5666 . . . 4 (Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))) ↔ ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))) ⊆ (V × V))
31, 2mpbir 231 . . 3 Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V)))
4 df-image 35887 . . . 4 Image𝐴 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V)))
54releqi 5761 . . 3 (Rel Image𝐴 ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))))
63, 5mpbir 231 . 2 Rel Image𝐴
7 vex 3468 . . . . . 6 𝑥 ∈ V
8 vex 3468 . . . . . 6 𝑦 ∈ V
97, 8brimage 35949 . . . . 5 (𝑥Image𝐴𝑦𝑦 = (𝐴𝑥))
10 vex 3468 . . . . . 6 𝑧 ∈ V
117, 10brimage 35949 . . . . 5 (𝑥Image𝐴𝑧𝑧 = (𝐴𝑥))
12 eqtr3 2758 . . . . 5 ((𝑦 = (𝐴𝑥) ∧ 𝑧 = (𝐴𝑥)) → 𝑦 = 𝑧)
139, 11, 12syl2anb 598 . . . 4 ((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)
1413gen2 1796 . . 3 𝑦𝑧((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)
1514ax-gen 1795 . 2 𝑥𝑦𝑧((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)
16 dffun2 6546 . 2 (Fun Image𝐴 ↔ (Rel Image𝐴 ∧ ∀𝑥𝑦𝑧((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)))
176, 15, 16mpbir2an 711 1 Fun Image𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  Vcvv 3464  cdif 3928  wss 3931  csymdif 4232   class class class wbr 5124   E cep 5557   × cxp 5657  ccnv 5658  ran crn 5660  cima 5662  ccom 5663  Rel wrel 5664  Fun wfun 6530  ctxp 35853  Imagecimage 35863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-symdif 4233  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-eprel 5558  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-1st 7993  df-2nd 7994  df-txp 35877  df-image 35887
This theorem is referenced by:  fnimage  35952  imageval  35953  imagesset  35976
  Copyright terms: Public domain W3C validator