![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funimage | Structured version Visualization version GIF version |
Description: Image𝐴 is a function. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
funimage | ⊢ Fun Image𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4123 | . . . 4 ⊢ ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) ⊆ (V × V) | |
2 | df-rel 5673 | . . . 4 ⊢ (Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) ↔ ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) ⊆ (V × V)) | |
3 | 1, 2 | mpbir 230 | . . 3 ⊢ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) |
4 | df-image 35297 | . . . 4 ⊢ Image𝐴 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) | |
5 | 4 | releqi 5767 | . . 3 ⊢ (Rel Image𝐴 ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V)))) |
6 | 3, 5 | mpbir 230 | . 2 ⊢ Rel Image𝐴 |
7 | vex 3470 | . . . . . 6 ⊢ 𝑥 ∈ V | |
8 | vex 3470 | . . . . . 6 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | brimage 35359 | . . . . 5 ⊢ (𝑥Image𝐴𝑦 ↔ 𝑦 = (𝐴 “ 𝑥)) |
10 | vex 3470 | . . . . . 6 ⊢ 𝑧 ∈ V | |
11 | 7, 10 | brimage 35359 | . . . . 5 ⊢ (𝑥Image𝐴𝑧 ↔ 𝑧 = (𝐴 “ 𝑥)) |
12 | eqtr3 2750 | . . . . 5 ⊢ ((𝑦 = (𝐴 “ 𝑥) ∧ 𝑧 = (𝐴 “ 𝑥)) → 𝑦 = 𝑧) | |
13 | 9, 11, 12 | syl2anb 597 | . . . 4 ⊢ ((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧) |
14 | 13 | gen2 1790 | . . 3 ⊢ ∀𝑦∀𝑧((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧) |
15 | 14 | ax-gen 1789 | . 2 ⊢ ∀𝑥∀𝑦∀𝑧((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧) |
16 | dffun2 6543 | . 2 ⊢ (Fun Image𝐴 ↔ (Rel Image𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧))) | |
17 | 6, 15, 16 | mpbir2an 708 | 1 ⊢ Fun Image𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1531 = wceq 1533 Vcvv 3466 ∖ cdif 3937 ⊆ wss 3940 △ csymdif 4233 class class class wbr 5138 E cep 5569 × cxp 5664 ◡ccnv 5665 ran crn 5667 “ cima 5669 ∘ ccom 5670 Rel wrel 5671 Fun wfun 6527 ⊗ ctxp 35263 Imagecimage 35273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-symdif 4234 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-eprel 5570 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fo 6539 df-fv 6541 df-1st 7968 df-2nd 7969 df-txp 35287 df-image 35297 |
This theorem is referenced by: fnimage 35362 imageval 35363 imagesset 35386 |
Copyright terms: Public domain | W3C validator |