Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funimage Structured version   Visualization version   GIF version

Theorem funimage 35910
Description: Image𝐴 is a function. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funimage Fun Image𝐴

Proof of Theorem funimage
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4146 . . . 4 ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))) ⊆ (V × V)
2 df-rel 5696 . . . 4 (Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))) ↔ ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))) ⊆ (V × V))
31, 2mpbir 231 . . 3 Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V)))
4 df-image 35846 . . . 4 Image𝐴 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V)))
54releqi 5790 . . 3 (Rel Image𝐴 ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))))
63, 5mpbir 231 . 2 Rel Image𝐴
7 vex 3482 . . . . . 6 𝑥 ∈ V
8 vex 3482 . . . . . 6 𝑦 ∈ V
97, 8brimage 35908 . . . . 5 (𝑥Image𝐴𝑦𝑦 = (𝐴𝑥))
10 vex 3482 . . . . . 6 𝑧 ∈ V
117, 10brimage 35908 . . . . 5 (𝑥Image𝐴𝑧𝑧 = (𝐴𝑥))
12 eqtr3 2761 . . . . 5 ((𝑦 = (𝐴𝑥) ∧ 𝑧 = (𝐴𝑥)) → 𝑦 = 𝑧)
139, 11, 12syl2anb 598 . . . 4 ((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)
1413gen2 1793 . . 3 𝑦𝑧((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)
1514ax-gen 1792 . 2 𝑥𝑦𝑧((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)
16 dffun2 6573 . 2 (Fun Image𝐴 ↔ (Rel Image𝐴 ∧ ∀𝑥𝑦𝑧((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)))
176, 15, 16mpbir2an 711 1 Fun Image𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  Vcvv 3478  cdif 3960  wss 3963  csymdif 4258   class class class wbr 5148   E cep 5588   × cxp 5687  ccnv 5688  ran crn 5690  cima 5692  ccom 5693  Rel wrel 5694  Fun wfun 6557  ctxp 35812  Imagecimage 35822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-symdif 4259  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-eprel 5589  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-1st 8013  df-2nd 8014  df-txp 35836  df-image 35846
This theorem is referenced by:  fnimage  35911  imageval  35912  imagesset  35935
  Copyright terms: Public domain W3C validator