![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funimage | Structured version Visualization version GIF version |
Description: Image𝐴 is a function. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
funimage | ⊢ Fun Image𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4146 | . . . 4 ⊢ ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) ⊆ (V × V) | |
2 | df-rel 5696 | . . . 4 ⊢ (Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) ↔ ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) ⊆ (V × V)) | |
3 | 1, 2 | mpbir 231 | . . 3 ⊢ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) |
4 | df-image 35846 | . . . 4 ⊢ Image𝐴 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) | |
5 | 4 | releqi 5790 | . . 3 ⊢ (Rel Image𝐴 ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V)))) |
6 | 3, 5 | mpbir 231 | . 2 ⊢ Rel Image𝐴 |
7 | vex 3482 | . . . . . 6 ⊢ 𝑥 ∈ V | |
8 | vex 3482 | . . . . . 6 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | brimage 35908 | . . . . 5 ⊢ (𝑥Image𝐴𝑦 ↔ 𝑦 = (𝐴 “ 𝑥)) |
10 | vex 3482 | . . . . . 6 ⊢ 𝑧 ∈ V | |
11 | 7, 10 | brimage 35908 | . . . . 5 ⊢ (𝑥Image𝐴𝑧 ↔ 𝑧 = (𝐴 “ 𝑥)) |
12 | eqtr3 2761 | . . . . 5 ⊢ ((𝑦 = (𝐴 “ 𝑥) ∧ 𝑧 = (𝐴 “ 𝑥)) → 𝑦 = 𝑧) | |
13 | 9, 11, 12 | syl2anb 598 | . . . 4 ⊢ ((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧) |
14 | 13 | gen2 1793 | . . 3 ⊢ ∀𝑦∀𝑧((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧) |
15 | 14 | ax-gen 1792 | . 2 ⊢ ∀𝑥∀𝑦∀𝑧((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧) |
16 | dffun2 6573 | . 2 ⊢ (Fun Image𝐴 ↔ (Rel Image𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧))) | |
17 | 6, 15, 16 | mpbir2an 711 | 1 ⊢ Fun Image𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 Vcvv 3478 ∖ cdif 3960 ⊆ wss 3963 △ csymdif 4258 class class class wbr 5148 E cep 5588 × cxp 5687 ◡ccnv 5688 ran crn 5690 “ cima 5692 ∘ ccom 5693 Rel wrel 5694 Fun wfun 6557 ⊗ ctxp 35812 Imagecimage 35822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-symdif 4259 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-eprel 5589 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-1st 8013 df-2nd 8014 df-txp 35836 df-image 35846 |
This theorem is referenced by: fnimage 35911 imageval 35912 imagesset 35935 |
Copyright terms: Public domain | W3C validator |