![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funimage | Structured version Visualization version GIF version |
Description: Image𝐴 is a function. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
funimage | ⊢ Fun Image𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4159 | . . . 4 ⊢ ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) ⊆ (V × V) | |
2 | df-rel 5707 | . . . 4 ⊢ (Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) ↔ ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) ⊆ (V × V)) | |
3 | 1, 2 | mpbir 231 | . . 3 ⊢ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) |
4 | df-image 35828 | . . . 4 ⊢ Image𝐴 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) | |
5 | 4 | releqi 5801 | . . 3 ⊢ (Rel Image𝐴 ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V)))) |
6 | 3, 5 | mpbir 231 | . 2 ⊢ Rel Image𝐴 |
7 | vex 3492 | . . . . . 6 ⊢ 𝑥 ∈ V | |
8 | vex 3492 | . . . . . 6 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | brimage 35890 | . . . . 5 ⊢ (𝑥Image𝐴𝑦 ↔ 𝑦 = (𝐴 “ 𝑥)) |
10 | vex 3492 | . . . . . 6 ⊢ 𝑧 ∈ V | |
11 | 7, 10 | brimage 35890 | . . . . 5 ⊢ (𝑥Image𝐴𝑧 ↔ 𝑧 = (𝐴 “ 𝑥)) |
12 | eqtr3 2766 | . . . . 5 ⊢ ((𝑦 = (𝐴 “ 𝑥) ∧ 𝑧 = (𝐴 “ 𝑥)) → 𝑦 = 𝑧) | |
13 | 9, 11, 12 | syl2anb 597 | . . . 4 ⊢ ((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧) |
14 | 13 | gen2 1794 | . . 3 ⊢ ∀𝑦∀𝑧((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧) |
15 | 14 | ax-gen 1793 | . 2 ⊢ ∀𝑥∀𝑦∀𝑧((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧) |
16 | dffun2 6583 | . 2 ⊢ (Fun Image𝐴 ↔ (Rel Image𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧))) | |
17 | 6, 15, 16 | mpbir2an 710 | 1 ⊢ Fun Image𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 △ csymdif 4271 class class class wbr 5166 E cep 5598 × cxp 5698 ◡ccnv 5699 ran crn 5701 “ cima 5703 ∘ ccom 5704 Rel wrel 5705 Fun wfun 6567 ⊗ ctxp 35794 Imagecimage 35804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-symdif 4272 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-eprel 5599 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-1st 8030 df-2nd 8031 df-txp 35818 df-image 35828 |
This theorem is referenced by: fnimage 35893 imageval 35894 imagesset 35917 |
Copyright terms: Public domain | W3C validator |