Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funimage Structured version   Visualization version   GIF version

Theorem funimage 35361
Description: Image𝐴 is a function. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funimage Fun Image𝐴

Proof of Theorem funimage
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4123 . . . 4 ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))) ⊆ (V × V)
2 df-rel 5673 . . . 4 (Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))) ↔ ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))) ⊆ (V × V))
31, 2mpbir 230 . . 3 Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V)))
4 df-image 35297 . . . 4 Image𝐴 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V)))
54releqi 5767 . . 3 (Rel Image𝐴 ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))))
63, 5mpbir 230 . 2 Rel Image𝐴
7 vex 3470 . . . . . 6 𝑥 ∈ V
8 vex 3470 . . . . . 6 𝑦 ∈ V
97, 8brimage 35359 . . . . 5 (𝑥Image𝐴𝑦𝑦 = (𝐴𝑥))
10 vex 3470 . . . . . 6 𝑧 ∈ V
117, 10brimage 35359 . . . . 5 (𝑥Image𝐴𝑧𝑧 = (𝐴𝑥))
12 eqtr3 2750 . . . . 5 ((𝑦 = (𝐴𝑥) ∧ 𝑧 = (𝐴𝑥)) → 𝑦 = 𝑧)
139, 11, 12syl2anb 597 . . . 4 ((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)
1413gen2 1790 . . 3 𝑦𝑧((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)
1514ax-gen 1789 . 2 𝑥𝑦𝑧((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)
16 dffun2 6543 . 2 (Fun Image𝐴 ↔ (Rel Image𝐴 ∧ ∀𝑥𝑦𝑧((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)))
176, 15, 16mpbir2an 708 1 Fun Image𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1531   = wceq 1533  Vcvv 3466  cdif 3937  wss 3940  csymdif 4233   class class class wbr 5138   E cep 5569   × cxp 5664  ccnv 5665  ran crn 5667  cima 5669  ccom 5670  Rel wrel 5671  Fun wfun 6527  ctxp 35263  Imagecimage 35273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-symdif 4234  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-eprel 5570  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-fo 6539  df-fv 6541  df-1st 7968  df-2nd 7969  df-txp 35287  df-image 35297
This theorem is referenced by:  fnimage  35362  imageval  35363  imagesset  35386
  Copyright terms: Public domain W3C validator