Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funimage | Structured version Visualization version GIF version |
Description: Image𝐴 is a function. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
funimage | ⊢ Fun Image𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4062 | . . . 4 ⊢ ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) ⊆ (V × V) | |
2 | df-rel 5587 | . . . 4 ⊢ (Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) ↔ ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) ⊆ (V × V)) | |
3 | 1, 2 | mpbir 230 | . . 3 ⊢ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) |
4 | df-image 34093 | . . . 4 ⊢ Image𝐴 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) | |
5 | 4 | releqi 5678 | . . 3 ⊢ (Rel Image𝐴 ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V)))) |
6 | 3, 5 | mpbir 230 | . 2 ⊢ Rel Image𝐴 |
7 | vex 3426 | . . . . . 6 ⊢ 𝑥 ∈ V | |
8 | vex 3426 | . . . . . 6 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | brimage 34155 | . . . . 5 ⊢ (𝑥Image𝐴𝑦 ↔ 𝑦 = (𝐴 “ 𝑥)) |
10 | vex 3426 | . . . . . 6 ⊢ 𝑧 ∈ V | |
11 | 7, 10 | brimage 34155 | . . . . 5 ⊢ (𝑥Image𝐴𝑧 ↔ 𝑧 = (𝐴 “ 𝑥)) |
12 | eqtr3 2764 | . . . . 5 ⊢ ((𝑦 = (𝐴 “ 𝑥) ∧ 𝑧 = (𝐴 “ 𝑥)) → 𝑦 = 𝑧) | |
13 | 9, 11, 12 | syl2anb 597 | . . . 4 ⊢ ((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧) |
14 | 13 | gen2 1800 | . . 3 ⊢ ∀𝑦∀𝑧((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧) |
15 | 14 | ax-gen 1799 | . 2 ⊢ ∀𝑥∀𝑦∀𝑧((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧) |
16 | dffun2 6428 | . 2 ⊢ (Fun Image𝐴 ↔ (Rel Image𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧))) | |
17 | 6, 15, 16 | mpbir2an 707 | 1 ⊢ Fun Image𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 △ csymdif 4172 class class class wbr 5070 E cep 5485 × cxp 5578 ◡ccnv 5579 ran crn 5581 “ cima 5583 ∘ ccom 5584 Rel wrel 5585 Fun wfun 6412 ⊗ ctxp 34059 Imagecimage 34069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-symdif 4173 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-eprel 5486 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-1st 7804 df-2nd 7805 df-txp 34083 df-image 34093 |
This theorem is referenced by: fnimage 34158 imageval 34159 imagesset 34182 |
Copyright terms: Public domain | W3C validator |