Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funimage Structured version   Visualization version   GIF version

Theorem funimage 34230
Description: Image𝐴 is a function. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funimage Fun Image𝐴

Proof of Theorem funimage
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4066 . . . 4 ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))) ⊆ (V × V)
2 df-rel 5596 . . . 4 (Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))) ↔ ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))) ⊆ (V × V))
31, 2mpbir 230 . . 3 Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V)))
4 df-image 34166 . . . 4 Image𝐴 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V)))
54releqi 5688 . . 3 (Rel Image𝐴 ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))))
63, 5mpbir 230 . 2 Rel Image𝐴
7 vex 3436 . . . . . 6 𝑥 ∈ V
8 vex 3436 . . . . . 6 𝑦 ∈ V
97, 8brimage 34228 . . . . 5 (𝑥Image𝐴𝑦𝑦 = (𝐴𝑥))
10 vex 3436 . . . . . 6 𝑧 ∈ V
117, 10brimage 34228 . . . . 5 (𝑥Image𝐴𝑧𝑧 = (𝐴𝑥))
12 eqtr3 2764 . . . . 5 ((𝑦 = (𝐴𝑥) ∧ 𝑧 = (𝐴𝑥)) → 𝑦 = 𝑧)
139, 11, 12syl2anb 598 . . . 4 ((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)
1413gen2 1799 . . 3 𝑦𝑧((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)
1514ax-gen 1798 . 2 𝑥𝑦𝑧((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)
16 dffun2 6443 . 2 (Fun Image𝐴 ↔ (Rel Image𝐴 ∧ ∀𝑥𝑦𝑧((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)))
176, 15, 16mpbir2an 708 1 Fun Image𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537   = wceq 1539  Vcvv 3432  cdif 3884  wss 3887  csymdif 4175   class class class wbr 5074   E cep 5494   × cxp 5587  ccnv 5588  ran crn 5590  cima 5592  ccom 5593  Rel wrel 5594  Fun wfun 6427  ctxp 34132  Imagecimage 34142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-symdif 4176  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-eprel 5495  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-1st 7831  df-2nd 7832  df-txp 34156  df-image 34166
This theorem is referenced by:  fnimage  34231  imageval  34232  imagesset  34255
  Copyright terms: Public domain W3C validator