| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funimage | Structured version Visualization version GIF version | ||
| Description: Image𝐴 is a function. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| funimage | ⊢ Fun Image𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4099 | . . . 4 ⊢ ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) ⊆ (V × V) | |
| 2 | df-rel 5645 | . . . 4 ⊢ (Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) ↔ ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) ⊆ (V × V)) | |
| 3 | 1, 2 | mpbir 231 | . . 3 ⊢ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) |
| 4 | df-image 35852 | . . . 4 ⊢ Image𝐴 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) | |
| 5 | 4 | releqi 5740 | . . 3 ⊢ (Rel Image𝐴 ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V)))) |
| 6 | 3, 5 | mpbir 231 | . 2 ⊢ Rel Image𝐴 |
| 7 | vex 3451 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 8 | vex 3451 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | brimage 35914 | . . . . 5 ⊢ (𝑥Image𝐴𝑦 ↔ 𝑦 = (𝐴 “ 𝑥)) |
| 10 | vex 3451 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 11 | 7, 10 | brimage 35914 | . . . . 5 ⊢ (𝑥Image𝐴𝑧 ↔ 𝑧 = (𝐴 “ 𝑥)) |
| 12 | eqtr3 2751 | . . . . 5 ⊢ ((𝑦 = (𝐴 “ 𝑥) ∧ 𝑧 = (𝐴 “ 𝑥)) → 𝑦 = 𝑧) | |
| 13 | 9, 11, 12 | syl2anb 598 | . . . 4 ⊢ ((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧) |
| 14 | 13 | gen2 1796 | . . 3 ⊢ ∀𝑦∀𝑧((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧) |
| 15 | 14 | ax-gen 1795 | . 2 ⊢ ∀𝑥∀𝑦∀𝑧((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧) |
| 16 | dffun2 6521 | . 2 ⊢ (Fun Image𝐴 ↔ (Rel Image𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥Image𝐴𝑦 ∧ 𝑥Image𝐴𝑧) → 𝑦 = 𝑧))) | |
| 17 | 6, 15, 16 | mpbir2an 711 | 1 ⊢ Fun Image𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 △ csymdif 4215 class class class wbr 5107 E cep 5537 × cxp 5636 ◡ccnv 5637 ran crn 5639 “ cima 5641 ∘ ccom 5642 Rel wrel 5643 Fun wfun 6505 ⊗ ctxp 35818 Imagecimage 35828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-symdif 4216 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-eprel 5538 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-1st 7968 df-2nd 7969 df-txp 35842 df-image 35852 |
| This theorem is referenced by: fnimage 35917 imageval 35918 imagesset 35941 |
| Copyright terms: Public domain | W3C validator |