Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funimage Structured version   Visualization version   GIF version

Theorem funimage 33502
Description: Image𝐴 is a function. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funimage Fun Image𝐴

Proof of Theorem funimage
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4059 . . . 4 ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))) ⊆ (V × V)
2 df-rel 5526 . . . 4 (Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))) ↔ ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))) ⊆ (V × V))
31, 2mpbir 234 . . 3 Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V)))
4 df-image 33438 . . . 4 Image𝐴 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V)))
54releqi 5616 . . 3 (Rel Image𝐴 ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))))
63, 5mpbir 234 . 2 Rel Image𝐴
7 vex 3444 . . . . . 6 𝑥 ∈ V
8 vex 3444 . . . . . 6 𝑦 ∈ V
97, 8brimage 33500 . . . . 5 (𝑥Image𝐴𝑦𝑦 = (𝐴𝑥))
10 vex 3444 . . . . . 6 𝑧 ∈ V
117, 10brimage 33500 . . . . 5 (𝑥Image𝐴𝑧𝑧 = (𝐴𝑥))
12 eqtr3 2820 . . . . 5 ((𝑦 = (𝐴𝑥) ∧ 𝑧 = (𝐴𝑥)) → 𝑦 = 𝑧)
139, 11, 12syl2anb 600 . . . 4 ((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)
1413gen2 1798 . . 3 𝑦𝑧((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)
1514ax-gen 1797 . 2 𝑥𝑦𝑧((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)
16 dffun2 6334 . 2 (Fun Image𝐴 ↔ (Rel Image𝐴 ∧ ∀𝑥𝑦𝑧((𝑥Image𝐴𝑦𝑥Image𝐴𝑧) → 𝑦 = 𝑧)))
176, 15, 16mpbir2an 710 1 Fun Image𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1536   = wceq 1538  Vcvv 3441  cdif 3878  wss 3881  csymdif 4168   class class class wbr 5030   E cep 5429   × cxp 5517  ccnv 5518  ran crn 5520  cima 5522  ccom 5523  Rel wrel 5524  Fun wfun 6318  ctxp 33404  Imagecimage 33414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-symdif 4169  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-eprel 5430  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fo 6330  df-fv 6332  df-1st 7671  df-2nd 7672  df-txp 33428  df-image 33438
This theorem is referenced by:  fnimage  33503  imageval  33504  imagesset  33527
  Copyright terms: Public domain W3C validator