| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releqg | Structured version Visualization version GIF version | ||
| Description: The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| releqg.r | ⊢ 𝑅 = (𝐺 ~QG 𝑆) |
| Ref | Expression |
|---|---|
| releqg | ⊢ Rel 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eqg 19108 | . . 3 ⊢ ~QG = (𝑔 ∈ V, 𝑠 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg‘𝑔)‘𝑥)(+g‘𝑔)𝑦) ∈ 𝑠)}) | |
| 2 | 1 | relmpoopab 8093 | . 2 ⊢ Rel (𝐺 ~QG 𝑆) |
| 3 | releqg.r | . . 3 ⊢ 𝑅 = (𝐺 ~QG 𝑆) | |
| 4 | 3 | releqi 5756 | . 2 ⊢ (Rel 𝑅 ↔ Rel (𝐺 ~QG 𝑆)) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ Rel 𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 {cpr 4603 Rel wrel 5659 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 invgcminusg 18917 ~QG cqg 19105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-eqg 19108 |
| This theorem is referenced by: eqger 19161 eqgid 19163 tgptsmscls 24088 |
| Copyright terms: Public domain | W3C validator |