![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releqg | Structured version Visualization version GIF version |
Description: The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
releqg.r | ⊢ 𝑅 = (𝐺 ~QG 𝑆) |
Ref | Expression |
---|---|
releqg | ⊢ Rel 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eqg 19114 | . . 3 ⊢ ~QG = (𝑔 ∈ V, 𝑠 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg‘𝑔)‘𝑥)(+g‘𝑔)𝑦) ∈ 𝑠)}) | |
2 | 1 | relmpoopab 8107 | . 2 ⊢ Rel (𝐺 ~QG 𝑆) |
3 | releqg.r | . . 3 ⊢ 𝑅 = (𝐺 ~QG 𝑆) | |
4 | 3 | releqi 5782 | . 2 ⊢ (Rel 𝑅 ↔ Rel (𝐺 ~QG 𝑆)) |
5 | 2, 4 | mpbir 230 | 1 ⊢ Rel 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ⊆ wss 3946 {cpr 4634 Rel wrel 5686 ‘cfv 6553 (class class class)co 7423 Basecbs 17208 +gcplusg 17261 invgcminusg 18924 ~QG cqg 19111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pr 5432 ax-un 7745 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-iota 6505 df-fun 6555 df-fv 6561 df-ov 7426 df-oprab 7427 df-mpo 7428 df-1st 8002 df-2nd 8003 df-eqg 19114 |
This theorem is referenced by: eqger 19167 eqgid 19169 tgptsmscls 24137 |
Copyright terms: Public domain | W3C validator |