![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releqg | Structured version Visualization version GIF version |
Description: The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
releqg.r | ⊢ 𝑅 = (𝐺 ~QG 𝑆) |
Ref | Expression |
---|---|
releqg | ⊢ Rel 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eqg 19165 | . . 3 ⊢ ~QG = (𝑔 ∈ V, 𝑠 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg‘𝑔)‘𝑥)(+g‘𝑔)𝑦) ∈ 𝑠)}) | |
2 | 1 | relmpoopab 8135 | . 2 ⊢ Rel (𝐺 ~QG 𝑆) |
3 | releqg.r | . . 3 ⊢ 𝑅 = (𝐺 ~QG 𝑆) | |
4 | 3 | releqi 5801 | . 2 ⊢ (Rel 𝑅 ↔ Rel (𝐺 ~QG 𝑆)) |
5 | 2, 4 | mpbir 231 | 1 ⊢ Rel 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 {cpr 4650 Rel wrel 5705 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 invgcminusg 18974 ~QG cqg 19162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-eqg 19165 |
This theorem is referenced by: eqger 19218 eqgid 19220 tgptsmscls 24179 |
Copyright terms: Public domain | W3C validator |