MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releqg Structured version   Visualization version   GIF version

Theorem releqg 19164
Description: The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypothesis
Ref Expression
releqg.r 𝑅 = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
releqg Rel 𝑅

Proof of Theorem releqg
Dummy variables 𝑔 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-eqg 19114 . . 3 ~QG = (𝑔 ∈ V, 𝑠 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg𝑔)‘𝑥)(+g𝑔)𝑦) ∈ 𝑠)})
21relmpoopab 8107 . 2 Rel (𝐺 ~QG 𝑆)
3 releqg.r . . 3 𝑅 = (𝐺 ~QG 𝑆)
43releqi 5782 . 2 (Rel 𝑅 ↔ Rel (𝐺 ~QG 𝑆))
52, 4mpbir 230 1 Rel 𝑅
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  wss 3946  {cpr 4634  Rel wrel 5686  cfv 6553  (class class class)co 7423  Basecbs 17208  +gcplusg 17261  invgcminusg 18924   ~QG cqg 19111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pr 5432  ax-un 7745
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fv 6561  df-ov 7426  df-oprab 7427  df-mpo 7428  df-1st 8002  df-2nd 8003  df-eqg 19114
This theorem is referenced by:  eqger  19167  eqgid  19169  tgptsmscls  24137
  Copyright terms: Public domain W3C validator