MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpfld Structured version   Visualization version   GIF version

Theorem relexpfld 14748
Description: The field of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpfld ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅)

Proof of Theorem relexpfld
StepHypRef Expression
1 simpl 483 . . . . . . . 8 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → 𝑁 = 1)
21oveq2d 7284 . . . . . . 7 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) = (𝑅𝑟1))
3 relexp1g 14725 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
43ad2antll 726 . . . . . . 7 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟1) = 𝑅)
52, 4eqtrd 2778 . . . . . 6 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) = 𝑅)
65unieqd 4854 . . . . 5 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) = 𝑅)
76unieqd 4854 . . . 4 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) = 𝑅)
8 eqimss 3977 . . . 4 ( (𝑅𝑟𝑁) = 𝑅 (𝑅𝑟𝑁) ⊆ 𝑅)
97, 8syl 17 . . 3 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) ⊆ 𝑅)
109ex 413 . 2 (𝑁 = 1 → ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅))
11 simp2 1136 . . . . . . 7 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → 𝑁 ∈ ℕ0)
12 simp3 1137 . . . . . . 7 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → 𝑅𝑉)
13 simp1 1135 . . . . . . . 8 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → ¬ 𝑁 = 1)
1413pm2.21d 121 . . . . . . 7 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑁 = 1 → Rel 𝑅))
1511, 12, 143jca 1127 . . . . . 6 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑁 ∈ ℕ0𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)))
16 relexprelg 14737 . . . . . 6 ((𝑁 ∈ ℕ0𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑁))
17 relfld 6172 . . . . . 6 (Rel (𝑅𝑟𝑁) → (𝑅𝑟𝑁) = (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)))
1815, 16, 173syl 18 . . . . 5 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) = (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)))
19 elnn0 12223 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
20 relexpnndm 14740 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
21 relexpnnrn 14744 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) ⊆ ran 𝑅)
22 unss12 4116 . . . . . . . . . 10 ((dom (𝑅𝑟𝑁) ⊆ dom 𝑅 ∧ ran (𝑅𝑟𝑁) ⊆ ran 𝑅) → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))
2320, 21, 22syl2anc 584 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))
2423ex 413 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑅𝑉 → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)))
25 simpl 483 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑅𝑉) → 𝑁 = 0)
2625oveq2d 7284 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
27 relexp0g 14721 . . . . . . . . . . . . . . 15 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
2827adantl 482 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
2926, 28eqtrd 2778 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3029dmeqd 5808 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) = dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
31 dmresi 5955 . . . . . . . . . . . 12 dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
3230, 31eqtrdi 2794 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅))
33 eqimss 3977 . . . . . . . . . . 11 (dom (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
3432, 33syl 17 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
3529rneqd 5841 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) = ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
36 rnresi 5977 . . . . . . . . . . . 12 ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
3735, 36eqtrdi 2794 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅))
38 eqimss 3977 . . . . . . . . . . 11 (ran (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅) → ran (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
3937, 38syl 17 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
4034, 39unssd 4120 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑅𝑉) → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))
4140ex 413 . . . . . . . 8 (𝑁 = 0 → (𝑅𝑉 → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)))
4224, 41jaoi 854 . . . . . . 7 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑅𝑉 → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)))
4319, 42sylbi 216 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑅𝑉 → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)))
4411, 12, 43sylc 65 . . . . 5 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))
4518, 44eqsstrd 3959 . . . 4 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
46 dmrnssfld 5873 . . . 4 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
4745, 46sstrdi 3933 . . 3 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅)
48473expib 1121 . 2 𝑁 = 1 → ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅))
4910, 48pm2.61i 182 1 ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  cun 3885  wss 3887   cuni 4840   I cid 5484  dom cdm 5585  ran crn 5586  cres 5587  Rel wrel 5590  (class class class)co 7268  0cc0 10859  1c1 10860  cn 11961  0cn0 12221  𝑟crelexp 14718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-er 8486  df-en 8722  df-dom 8723  df-sdom 8724  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-nn 11962  df-n0 12222  df-z 12308  df-uz 12571  df-seq 13710  df-relexp 14719
This theorem is referenced by:  relexpfldd  14749
  Copyright terms: Public domain W3C validator