MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpfld Structured version   Visualization version   GIF version

Theorem relexpfld 14760
Description: The field of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpfld ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅)

Proof of Theorem relexpfld
StepHypRef Expression
1 simpl 483 . . . . . . . 8 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → 𝑁 = 1)
21oveq2d 7291 . . . . . . 7 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) = (𝑅𝑟1))
3 relexp1g 14737 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
43ad2antll 726 . . . . . . 7 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟1) = 𝑅)
52, 4eqtrd 2778 . . . . . 6 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) = 𝑅)
65unieqd 4853 . . . . 5 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) = 𝑅)
76unieqd 4853 . . . 4 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) = 𝑅)
8 eqimss 3977 . . . 4 ( (𝑅𝑟𝑁) = 𝑅 (𝑅𝑟𝑁) ⊆ 𝑅)
97, 8syl 17 . . 3 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) ⊆ 𝑅)
109ex 413 . 2 (𝑁 = 1 → ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅))
11 simp2 1136 . . . . . . 7 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → 𝑁 ∈ ℕ0)
12 simp3 1137 . . . . . . 7 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → 𝑅𝑉)
13 simp1 1135 . . . . . . . 8 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → ¬ 𝑁 = 1)
1413pm2.21d 121 . . . . . . 7 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑁 = 1 → Rel 𝑅))
1511, 12, 143jca 1127 . . . . . 6 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑁 ∈ ℕ0𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)))
16 relexprelg 14749 . . . . . 6 ((𝑁 ∈ ℕ0𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑁))
17 relfld 6178 . . . . . 6 (Rel (𝑅𝑟𝑁) → (𝑅𝑟𝑁) = (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)))
1815, 16, 173syl 18 . . . . 5 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) = (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)))
19 elnn0 12235 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
20 relexpnndm 14752 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
21 relexpnnrn 14756 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) ⊆ ran 𝑅)
22 unss12 4116 . . . . . . . . . 10 ((dom (𝑅𝑟𝑁) ⊆ dom 𝑅 ∧ ran (𝑅𝑟𝑁) ⊆ ran 𝑅) → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))
2320, 21, 22syl2anc 584 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))
2423ex 413 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑅𝑉 → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)))
25 simpl 483 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑅𝑉) → 𝑁 = 0)
2625oveq2d 7291 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
27 relexp0g 14733 . . . . . . . . . . . . . . 15 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
2827adantl 482 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
2926, 28eqtrd 2778 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3029dmeqd 5814 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) = dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
31 dmresi 5961 . . . . . . . . . . . 12 dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
3230, 31eqtrdi 2794 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅))
33 eqimss 3977 . . . . . . . . . . 11 (dom (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
3432, 33syl 17 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
3529rneqd 5847 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) = ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
36 rnresi 5983 . . . . . . . . . . . 12 ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
3735, 36eqtrdi 2794 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅))
38 eqimss 3977 . . . . . . . . . . 11 (ran (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅) → ran (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
3937, 38syl 17 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
4034, 39unssd 4120 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑅𝑉) → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))
4140ex 413 . . . . . . . 8 (𝑁 = 0 → (𝑅𝑉 → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)))
4224, 41jaoi 854 . . . . . . 7 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑅𝑉 → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)))
4319, 42sylbi 216 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑅𝑉 → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)))
4411, 12, 43sylc 65 . . . . 5 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))
4518, 44eqsstrd 3959 . . . 4 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
46 dmrnssfld 5879 . . . 4 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
4745, 46sstrdi 3933 . . 3 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅)
48473expib 1121 . 2 𝑁 = 1 → ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅))
4910, 48pm2.61i 182 1 ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  cun 3885  wss 3887   cuni 4839   I cid 5488  dom cdm 5589  ran crn 5590  cres 5591  Rel wrel 5594  (class class class)co 7275  0cc0 10871  1c1 10872  cn 11973  0cn0 12233  𝑟crelexp 14730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-relexp 14731
This theorem is referenced by:  relexpfldd  14761
  Copyright terms: Public domain W3C validator