MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpfld Structured version   Visualization version   GIF version

Theorem relexpfld 15015
Description: The field of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpfld ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅)

Proof of Theorem relexpfld
StepHypRef Expression
1 simpl 482 . . . . . . . 8 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → 𝑁 = 1)
21oveq2d 7403 . . . . . . 7 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) = (𝑅𝑟1))
3 relexp1g 14992 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
43ad2antll 729 . . . . . . 7 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟1) = 𝑅)
52, 4eqtrd 2764 . . . . . 6 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) = 𝑅)
65unieqd 4884 . . . . 5 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) = 𝑅)
76unieqd 4884 . . . 4 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) = 𝑅)
8 eqimss 4005 . . . 4 ( (𝑅𝑟𝑁) = 𝑅 (𝑅𝑟𝑁) ⊆ 𝑅)
97, 8syl 17 . . 3 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) ⊆ 𝑅)
109ex 412 . 2 (𝑁 = 1 → ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅))
11 simp2 1137 . . . . . . 7 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → 𝑁 ∈ ℕ0)
12 simp3 1138 . . . . . . 7 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → 𝑅𝑉)
13 simp1 1136 . . . . . . . 8 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → ¬ 𝑁 = 1)
1413pm2.21d 121 . . . . . . 7 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑁 = 1 → Rel 𝑅))
1511, 12, 143jca 1128 . . . . . 6 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑁 ∈ ℕ0𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)))
16 relexprelg 15004 . . . . . 6 ((𝑁 ∈ ℕ0𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑁))
17 relfld 6248 . . . . . 6 (Rel (𝑅𝑟𝑁) → (𝑅𝑟𝑁) = (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)))
1815, 16, 173syl 18 . . . . 5 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) = (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)))
19 elnn0 12444 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
20 relexpnndm 15007 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
21 relexpnnrn 15011 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) ⊆ ran 𝑅)
22 unss12 4151 . . . . . . . . . 10 ((dom (𝑅𝑟𝑁) ⊆ dom 𝑅 ∧ ran (𝑅𝑟𝑁) ⊆ ran 𝑅) → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))
2320, 21, 22syl2anc 584 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))
2423ex 412 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑅𝑉 → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)))
25 simpl 482 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑅𝑉) → 𝑁 = 0)
2625oveq2d 7403 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
27 relexp0g 14988 . . . . . . . . . . . . . . 15 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
2827adantl 481 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
2926, 28eqtrd 2764 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3029dmeqd 5869 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) = dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
31 dmresi 6023 . . . . . . . . . . . 12 dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
3230, 31eqtrdi 2780 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅))
33 eqimss 4005 . . . . . . . . . . 11 (dom (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
3432, 33syl 17 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
3529rneqd 5902 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) = ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
36 rnresi 6046 . . . . . . . . . . . 12 ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
3735, 36eqtrdi 2780 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅))
38 eqimss 4005 . . . . . . . . . . 11 (ran (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅) → ran (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
3937, 38syl 17 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
4034, 39unssd 4155 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑅𝑉) → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))
4140ex 412 . . . . . . . 8 (𝑁 = 0 → (𝑅𝑉 → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)))
4224, 41jaoi 857 . . . . . . 7 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑅𝑉 → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)))
4319, 42sylbi 217 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑅𝑉 → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)))
4411, 12, 43sylc 65 . . . . 5 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))
4518, 44eqsstrd 3981 . . . 4 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
46 dmrnssfld 5937 . . . 4 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
4745, 46sstrdi 3959 . . 3 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅)
48473expib 1122 . 2 𝑁 = 1 → ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅))
4910, 48pm2.61i 182 1 ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cun 3912  wss 3914   cuni 4871   I cid 5532  dom cdm 5638  ran crn 5639  cres 5640  Rel wrel 5643  (class class class)co 7387  0cc0 11068  1c1 11069  cn 12186  0cn0 12442  𝑟crelexp 14985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-relexp 14986
This theorem is referenced by:  relexpfldd  15016
  Copyright terms: Public domain W3C validator