![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvmptiunrelexplb0da | Structured version Visualization version GIF version |
Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
Ref | Expression |
---|---|
fvmptiunrelexplb0da.c | ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) |
fvmptiunrelexplb0da.r | ⊢ (𝜑 → 𝑅 ∈ V) |
fvmptiunrelexplb0da.n | ⊢ (𝜑 → 𝑁 ∈ V) |
fvmptiunrelexplb0da.rel | ⊢ (𝜑 → Rel 𝑅) |
fvmptiunrelexplb0da.0 | ⊢ (𝜑 → 0 ∈ 𝑁) |
Ref | Expression |
---|---|
fvmptiunrelexplb0da | ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (𝐶‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptiunrelexplb0da.rel | . . . 4 ⊢ (𝜑 → Rel 𝑅) | |
2 | relfld 5901 | . . . 4 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) |
4 | 3 | reseq2d 5628 | . 2 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
5 | fvmptiunrelexplb0da.c | . . 3 ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) | |
6 | fvmptiunrelexplb0da.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
7 | fvmptiunrelexplb0da.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ V) | |
8 | fvmptiunrelexplb0da.0 | . . 3 ⊢ (𝜑 → 0 ∈ 𝑁) | |
9 | 5, 6, 7, 8 | fvmptiunrelexplb0d 38816 | . 2 ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶‘𝑅)) |
10 | 4, 9 | eqsstrd 3863 | 1 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (𝐶‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 Vcvv 3413 ∪ cun 3795 ⊆ wss 3797 ∪ cuni 4657 ∪ ciun 4739 ↦ cmpt 4951 I cid 5248 dom cdm 5341 ran crn 5342 ↾ cres 5343 Rel wrel 5346 ‘cfv 6122 (class class class)co 6904 0cc0 10251 ↑𝑟crelexp 14136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-mulcl 10313 ax-i2m1 10319 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-reu 3123 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-id 5249 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-n0 11618 df-relexp 14137 |
This theorem is referenced by: fvrcllb0da 38826 fvrtrcllb0da 38868 |
Copyright terms: Public domain | W3C validator |