![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvmptiunrelexplb0da | Structured version Visualization version GIF version |
Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
Ref | Expression |
---|---|
fvmptiunrelexplb0da.c | ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) |
fvmptiunrelexplb0da.r | ⊢ (𝜑 → 𝑅 ∈ V) |
fvmptiunrelexplb0da.n | ⊢ (𝜑 → 𝑁 ∈ V) |
fvmptiunrelexplb0da.rel | ⊢ (𝜑 → Rel 𝑅) |
fvmptiunrelexplb0da.0 | ⊢ (𝜑 → 0 ∈ 𝑁) |
Ref | Expression |
---|---|
fvmptiunrelexplb0da | ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (𝐶‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptiunrelexplb0da.rel | . . . 4 ⊢ (𝜑 → Rel 𝑅) | |
2 | relfld 6279 | . . . 4 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) |
4 | 3 | reseq2d 5984 | . 2 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
5 | fvmptiunrelexplb0da.c | . . 3 ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) | |
6 | fvmptiunrelexplb0da.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
7 | fvmptiunrelexplb0da.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ V) | |
8 | fvmptiunrelexplb0da.0 | . . 3 ⊢ (𝜑 → 0 ∈ 𝑁) | |
9 | 5, 6, 7, 8 | fvmptiunrelexplb0d 43179 | . 2 ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶‘𝑅)) |
10 | 4, 9 | eqsstrd 4016 | 1 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (𝐶‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ∪ cun 3943 ⊆ wss 3945 ∪ cuni 4908 ∪ ciun 4996 ↦ cmpt 5231 I cid 5574 dom cdm 5677 ran crn 5678 ↾ cres 5679 Rel wrel 5682 ‘cfv 6547 (class class class)co 7417 0cc0 11138 ↑𝑟crelexp 14998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-mulcl 11200 ax-i2m1 11206 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3775 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-iota 6499 df-fun 6549 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 df-n0 12503 df-relexp 14999 |
This theorem is referenced by: fvrcllb0da 43189 fvrtrcllb0da 43231 |
Copyright terms: Public domain | W3C validator |