Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmptiunrelexplb0da Structured version   Visualization version   GIF version

Theorem fvmptiunrelexplb0da 43668
Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.)
Hypotheses
Ref Expression
fvmptiunrelexplb0da.c 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
fvmptiunrelexplb0da.r (𝜑𝑅 ∈ V)
fvmptiunrelexplb0da.n (𝜑𝑁 ∈ V)
fvmptiunrelexplb0da.rel (𝜑 → Rel 𝑅)
fvmptiunrelexplb0da.0 (𝜑 → 0 ∈ 𝑁)
Assertion
Ref Expression
fvmptiunrelexplb0da (𝜑 → ( I ↾ 𝑅) ⊆ (𝐶𝑅))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁   𝑅,𝑛,𝑟
Allowed substitution hints:   𝜑(𝑛,𝑟)

Proof of Theorem fvmptiunrelexplb0da
StepHypRef Expression
1 fvmptiunrelexplb0da.rel . . . 4 (𝜑 → Rel 𝑅)
2 relfld 6223 . . . 4 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
31, 2syl 17 . . 3 (𝜑 𝑅 = (dom 𝑅 ∪ ran 𝑅))
43reseq2d 5930 . 2 (𝜑 → ( I ↾ 𝑅) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
5 fvmptiunrelexplb0da.c . . 3 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
6 fvmptiunrelexplb0da.r . . 3 (𝜑𝑅 ∈ V)
7 fvmptiunrelexplb0da.n . . 3 (𝜑𝑁 ∈ V)
8 fvmptiunrelexplb0da.0 . . 3 (𝜑 → 0 ∈ 𝑁)
95, 6, 7, 8fvmptiunrelexplb0d 43667 . 2 (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶𝑅))
104, 9eqsstrd 3970 1 (𝜑 → ( I ↾ 𝑅) ⊆ (𝐶𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  cun 3901  wss 3903   cuni 4858   ciun 4941  cmpt 5173   I cid 5513  dom cdm 5619  ran crn 5620  cres 5621  Rel wrel 5624  cfv 6482  (class class class)co 7349  0cc0 11009  𝑟crelexp 14926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-mulcl 11071  ax-i2m1 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-n0 12385  df-relexp 14927
This theorem is referenced by:  fvrcllb0da  43677  fvrtrcllb0da  43719
  Copyright terms: Public domain W3C validator