| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvmptiunrelexplb0da | Structured version Visualization version GIF version | ||
| Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
| Ref | Expression |
|---|---|
| fvmptiunrelexplb0da.c | ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) |
| fvmptiunrelexplb0da.r | ⊢ (𝜑 → 𝑅 ∈ V) |
| fvmptiunrelexplb0da.n | ⊢ (𝜑 → 𝑁 ∈ V) |
| fvmptiunrelexplb0da.rel | ⊢ (𝜑 → Rel 𝑅) |
| fvmptiunrelexplb0da.0 | ⊢ (𝜑 → 0 ∈ 𝑁) |
| Ref | Expression |
|---|---|
| fvmptiunrelexplb0da | ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (𝐶‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptiunrelexplb0da.rel | . . . 4 ⊢ (𝜑 → Rel 𝑅) | |
| 2 | relfld 6222 | . . . 4 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) |
| 4 | 3 | reseq2d 5927 | . 2 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
| 5 | fvmptiunrelexplb0da.c | . . 3 ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) | |
| 6 | fvmptiunrelexplb0da.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
| 7 | fvmptiunrelexplb0da.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ V) | |
| 8 | fvmptiunrelexplb0da.0 | . . 3 ⊢ (𝜑 → 0 ∈ 𝑁) | |
| 9 | 5, 6, 7, 8 | fvmptiunrelexplb0d 43776 | . 2 ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶‘𝑅)) |
| 10 | 4, 9 | eqsstrd 3964 | 1 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (𝐶‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ⊆ wss 3897 ∪ cuni 4856 ∪ ciun 4939 ↦ cmpt 5170 I cid 5508 dom cdm 5614 ran crn 5615 ↾ cres 5616 Rel wrel 5619 ‘cfv 6481 (class class class)co 7346 0cc0 11006 ↑𝑟crelexp 14926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-i2m1 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-n0 12382 df-relexp 14927 |
| This theorem is referenced by: fvrcllb0da 43786 fvrtrcllb0da 43828 |
| Copyright terms: Public domain | W3C validator |