Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmptiunrelexplb0da Structured version   Visualization version   GIF version

Theorem fvmptiunrelexplb0da 43684
Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.)
Hypotheses
Ref Expression
fvmptiunrelexplb0da.c 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
fvmptiunrelexplb0da.r (𝜑𝑅 ∈ V)
fvmptiunrelexplb0da.n (𝜑𝑁 ∈ V)
fvmptiunrelexplb0da.rel (𝜑 → Rel 𝑅)
fvmptiunrelexplb0da.0 (𝜑 → 0 ∈ 𝑁)
Assertion
Ref Expression
fvmptiunrelexplb0da (𝜑 → ( I ↾ 𝑅) ⊆ (𝐶𝑅))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁   𝑅,𝑛,𝑟
Allowed substitution hints:   𝜑(𝑛,𝑟)

Proof of Theorem fvmptiunrelexplb0da
StepHypRef Expression
1 fvmptiunrelexplb0da.rel . . . 4 (𝜑 → Rel 𝑅)
2 relfld 6269 . . . 4 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
31, 2syl 17 . . 3 (𝜑 𝑅 = (dom 𝑅 ∪ ran 𝑅))
43reseq2d 5971 . 2 (𝜑 → ( I ↾ 𝑅) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
5 fvmptiunrelexplb0da.c . . 3 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
6 fvmptiunrelexplb0da.r . . 3 (𝜑𝑅 ∈ V)
7 fvmptiunrelexplb0da.n . . 3 (𝜑𝑁 ∈ V)
8 fvmptiunrelexplb0da.0 . . 3 (𝜑 → 0 ∈ 𝑁)
95, 6, 7, 8fvmptiunrelexplb0d 43683 . 2 (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶𝑅))
104, 9eqsstrd 3998 1 (𝜑 → ( I ↾ 𝑅) ⊆ (𝐶𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  cun 3929  wss 3931   cuni 4888   ciun 4972  cmpt 5206   I cid 5552  dom cdm 5659  ran crn 5660  cres 5661  Rel wrel 5664  cfv 6536  (class class class)co 7410  0cc0 11134  𝑟crelexp 15043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-mulcl 11196  ax-i2m1 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-n0 12507  df-relexp 15044
This theorem is referenced by:  fvrcllb0da  43693  fvrtrcllb0da  43735
  Copyright terms: Public domain W3C validator