| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relexp0 | Structured version Visualization version GIF version | ||
| Description: A relation composed zero times is the (restricted) identity. (Contributed by RP, 22-May-2020.) |
| Ref | Expression |
|---|---|
| relexp0 | ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relexp0g 15046 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) | |
| 2 | relfld 6269 | . . . 4 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) | |
| 3 | 2 | reseq2d 5971 | . . 3 ⊢ (Rel 𝑅 → ( I ↾ ∪ ∪ 𝑅) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
| 4 | 3 | eqcomd 2742 | . 2 ⊢ (Rel 𝑅 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ ∪ ∪ 𝑅)) |
| 5 | 1, 4 | sylan9eq 2791 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3929 ∪ cuni 4888 I cid 5552 dom cdm 5659 ran crn 5660 ↾ cres 5661 Rel wrel 5664 (class class class)co 7410 0cc0 11134 ↑𝑟crelexp 15043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-mulcl 11196 ax-i2m1 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-n0 12507 df-relexp 15044 |
| This theorem is referenced by: relexp0d 15048 relexpsucl 15055 relexpsucr 15056 relexpindlem 15087 |
| Copyright terms: Public domain | W3C validator |