Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relexp0 | Structured version Visualization version GIF version |
Description: A relation composed zero times is the (restricted) identity. (Contributed by RP, 22-May-2020.) |
Ref | Expression |
---|---|
relexp0 | ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relexp0g 14714 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) | |
2 | relfld 6175 | . . . 4 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) | |
3 | 2 | reseq2d 5888 | . . 3 ⊢ (Rel 𝑅 → ( I ↾ ∪ ∪ 𝑅) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
4 | 3 | eqcomd 2745 | . 2 ⊢ (Rel 𝑅 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ ∪ ∪ 𝑅)) |
5 | 1, 4 | sylan9eq 2799 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∪ cun 3889 ∪ cuni 4844 I cid 5487 dom cdm 5588 ran crn 5589 ↾ cres 5590 Rel wrel 5593 (class class class)co 7268 0cc0 10855 ↑𝑟crelexp 14711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-mulcl 10917 ax-i2m1 10923 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-n0 12217 df-relexp 14712 |
This theorem is referenced by: relexp0d 14716 relexpsucl 14723 relexpsucr 14724 relexpindlem 14755 |
Copyright terms: Public domain | W3C validator |