MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexp0 Structured version   Visualization version   GIF version

Theorem relexp0 14715
Description: A relation composed zero times is the (restricted) identity. (Contributed by RP, 22-May-2020.)
Assertion
Ref Expression
relexp0 ((𝑅𝑉 ∧ Rel 𝑅) → (𝑅𝑟0) = ( I ↾ 𝑅))

Proof of Theorem relexp0
StepHypRef Expression
1 relexp0g 14714 . 2 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
2 relfld 6175 . . . 4 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
32reseq2d 5888 . . 3 (Rel 𝑅 → ( I ↾ 𝑅) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
43eqcomd 2745 . 2 (Rel 𝑅 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ 𝑅))
51, 4sylan9eq 2799 1 ((𝑅𝑉 ∧ Rel 𝑅) → (𝑅𝑟0) = ( I ↾ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  cun 3889   cuni 4844   I cid 5487  dom cdm 5588  ran crn 5589  cres 5590  Rel wrel 5593  (class class class)co 7268  0cc0 10855  𝑟crelexp 14711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-mulcl 10917  ax-i2m1 10923
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-n0 12217  df-relexp 14712
This theorem is referenced by:  relexp0d  14716  relexpsucl  14723  relexpsucr  14724  relexpindlem  14755
  Copyright terms: Public domain W3C validator