Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oaf1o | Structured version Visualization version GIF version |
Description: Left addition by a constant is a bijection from ordinals to ordinals greater than the constant. (Contributed by Mario Carneiro, 30-May-2015.) |
Ref | Expression |
---|---|
oaf1o | ⊢ (𝐴 ∈ On → (𝑥 ∈ On ↦ (𝐴 +o 𝑥)):On–1-1-onto→(On ∖ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oacl 8327 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +o 𝑥) ∈ On) | |
2 | oaword1 8345 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝑥)) | |
3 | ontri1 6285 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (𝐴 +o 𝑥) ∈ On) → (𝐴 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐴)) | |
4 | 1, 3 | syldan 590 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐴)) |
5 | 2, 4 | mpbid 231 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ¬ (𝐴 +o 𝑥) ∈ 𝐴) |
6 | 1, 5 | eldifd 3894 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +o 𝑥) ∈ (On ∖ 𝐴)) |
7 | 6 | ralrimiva 3107 | . 2 ⊢ (𝐴 ∈ On → ∀𝑥 ∈ On (𝐴 +o 𝑥) ∈ (On ∖ 𝐴)) |
8 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → 𝐴 ∈ On) | |
9 | eldifi 4057 | . . . . . 6 ⊢ (𝑦 ∈ (On ∖ 𝐴) → 𝑦 ∈ On) | |
10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → 𝑦 ∈ On) |
11 | eldifn 4058 | . . . . . . 7 ⊢ (𝑦 ∈ (On ∖ 𝐴) → ¬ 𝑦 ∈ 𝐴) | |
12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → ¬ 𝑦 ∈ 𝐴) |
13 | ontri1 6285 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝐴)) | |
14 | 10, 13 | syldan 590 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → (𝐴 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝐴)) |
15 | 12, 14 | mpbird 256 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → 𝐴 ⊆ 𝑦) |
16 | oawordeu 8348 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴 ⊆ 𝑦) → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝑦) | |
17 | 8, 10, 15, 16 | syl21anc 834 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝑦) |
18 | eqcom 2745 | . . . . 5 ⊢ ((𝐴 +o 𝑥) = 𝑦 ↔ 𝑦 = (𝐴 +o 𝑥)) | |
19 | 18 | reubii 3317 | . . . 4 ⊢ (∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝑦 ↔ ∃!𝑥 ∈ On 𝑦 = (𝐴 +o 𝑥)) |
20 | 17, 19 | sylib 217 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → ∃!𝑥 ∈ On 𝑦 = (𝐴 +o 𝑥)) |
21 | 20 | ralrimiva 3107 | . 2 ⊢ (𝐴 ∈ On → ∀𝑦 ∈ (On ∖ 𝐴)∃!𝑥 ∈ On 𝑦 = (𝐴 +o 𝑥)) |
22 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ On ↦ (𝐴 +o 𝑥)) = (𝑥 ∈ On ↦ (𝐴 +o 𝑥)) | |
23 | 22 | f1ompt 6967 | . 2 ⊢ ((𝑥 ∈ On ↦ (𝐴 +o 𝑥)):On–1-1-onto→(On ∖ 𝐴) ↔ (∀𝑥 ∈ On (𝐴 +o 𝑥) ∈ (On ∖ 𝐴) ∧ ∀𝑦 ∈ (On ∖ 𝐴)∃!𝑥 ∈ On 𝑦 = (𝐴 +o 𝑥))) |
24 | 7, 21, 23 | sylanbrc 582 | 1 ⊢ (𝐴 ∈ On → (𝑥 ∈ On ↦ (𝐴 +o 𝑥)):On–1-1-onto→(On ∖ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃!wreu 3065 ∖ cdif 3880 ⊆ wss 3883 ↦ cmpt 5153 Oncon0 6251 –1-1-onto→wf1o 6417 (class class class)co 7255 +o coa 8264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-oadd 8271 |
This theorem is referenced by: oacomf1olem 8357 |
Copyright terms: Public domain | W3C validator |