| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oaf1o | Structured version Visualization version GIF version | ||
| Description: Left addition by a constant is a bijection from ordinals to ordinals greater than the constant. (Contributed by Mario Carneiro, 30-May-2015.) |
| Ref | Expression |
|---|---|
| oaf1o | ⊢ (𝐴 ∈ On → (𝑥 ∈ On ↦ (𝐴 +o 𝑥)):On–1-1-onto→(On ∖ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oacl 8502 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +o 𝑥) ∈ On) | |
| 2 | oaword1 8519 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝑥)) | |
| 3 | ontri1 6369 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (𝐴 +o 𝑥) ∈ On) → (𝐴 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐴)) | |
| 4 | 1, 3 | syldan 591 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐴)) |
| 5 | 2, 4 | mpbid 232 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ¬ (𝐴 +o 𝑥) ∈ 𝐴) |
| 6 | 1, 5 | eldifd 3928 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +o 𝑥) ∈ (On ∖ 𝐴)) |
| 7 | 6 | ralrimiva 3126 | . 2 ⊢ (𝐴 ∈ On → ∀𝑥 ∈ On (𝐴 +o 𝑥) ∈ (On ∖ 𝐴)) |
| 8 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → 𝐴 ∈ On) | |
| 9 | eldifi 4097 | . . . . . 6 ⊢ (𝑦 ∈ (On ∖ 𝐴) → 𝑦 ∈ On) | |
| 10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → 𝑦 ∈ On) |
| 11 | eldifn 4098 | . . . . . . 7 ⊢ (𝑦 ∈ (On ∖ 𝐴) → ¬ 𝑦 ∈ 𝐴) | |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → ¬ 𝑦 ∈ 𝐴) |
| 13 | ontri1 6369 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝐴)) | |
| 14 | 10, 13 | syldan 591 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → (𝐴 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝐴)) |
| 15 | 12, 14 | mpbird 257 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → 𝐴 ⊆ 𝑦) |
| 16 | oawordeu 8522 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴 ⊆ 𝑦) → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝑦) | |
| 17 | 8, 10, 15, 16 | syl21anc 837 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝑦) |
| 18 | eqcom 2737 | . . . . 5 ⊢ ((𝐴 +o 𝑥) = 𝑦 ↔ 𝑦 = (𝐴 +o 𝑥)) | |
| 19 | 18 | reubii 3365 | . . . 4 ⊢ (∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝑦 ↔ ∃!𝑥 ∈ On 𝑦 = (𝐴 +o 𝑥)) |
| 20 | 17, 19 | sylib 218 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → ∃!𝑥 ∈ On 𝑦 = (𝐴 +o 𝑥)) |
| 21 | 20 | ralrimiva 3126 | . 2 ⊢ (𝐴 ∈ On → ∀𝑦 ∈ (On ∖ 𝐴)∃!𝑥 ∈ On 𝑦 = (𝐴 +o 𝑥)) |
| 22 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ On ↦ (𝐴 +o 𝑥)) = (𝑥 ∈ On ↦ (𝐴 +o 𝑥)) | |
| 23 | 22 | f1ompt 7086 | . 2 ⊢ ((𝑥 ∈ On ↦ (𝐴 +o 𝑥)):On–1-1-onto→(On ∖ 𝐴) ↔ (∀𝑥 ∈ On (𝐴 +o 𝑥) ∈ (On ∖ 𝐴) ∧ ∀𝑦 ∈ (On ∖ 𝐴)∃!𝑥 ∈ On 𝑦 = (𝐴 +o 𝑥))) |
| 24 | 7, 21, 23 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ On → (𝑥 ∈ On ↦ (𝐴 +o 𝑥)):On–1-1-onto→(On ∖ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃!wreu 3354 ∖ cdif 3914 ⊆ wss 3917 ↦ cmpt 5191 Oncon0 6335 –1-1-onto→wf1o 6513 (class class class)co 7390 +o coa 8434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-oadd 8441 |
| This theorem is referenced by: oacomf1olem 8531 |
| Copyright terms: Public domain | W3C validator |