MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaf1o Structured version   Visualization version   GIF version

Theorem oaf1o 8504
Description: Left addition by a constant is a bijection from ordinals to ordinals greater than the constant. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
oaf1o (𝐴 ∈ On → (𝑥 ∈ On ↦ (𝐴 +o 𝑥)):On–1-1-onto→(On ∖ 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem oaf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oacl 8476 . . . 4 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +o 𝑥) ∈ On)
2 oaword1 8493 . . . . 5 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝑥))
3 ontri1 6354 . . . . . 6 ((𝐴 ∈ On ∧ (𝐴 +o 𝑥) ∈ On) → (𝐴 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐴))
41, 3syldan 591 . . . . 5 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐴))
52, 4mpbid 232 . . . 4 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ¬ (𝐴 +o 𝑥) ∈ 𝐴)
61, 5eldifd 3922 . . 3 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +o 𝑥) ∈ (On ∖ 𝐴))
76ralrimiva 3125 . 2 (𝐴 ∈ On → ∀𝑥 ∈ On (𝐴 +o 𝑥) ∈ (On ∖ 𝐴))
8 simpl 482 . . . . 5 ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → 𝐴 ∈ On)
9 eldifi 4090 . . . . . 6 (𝑦 ∈ (On ∖ 𝐴) → 𝑦 ∈ On)
109adantl 481 . . . . 5 ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → 𝑦 ∈ On)
11 eldifn 4091 . . . . . . 7 (𝑦 ∈ (On ∖ 𝐴) → ¬ 𝑦𝐴)
1211adantl 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → ¬ 𝑦𝐴)
13 ontri1 6354 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑦 ↔ ¬ 𝑦𝐴))
1410, 13syldan 591 . . . . . 6 ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → (𝐴𝑦 ↔ ¬ 𝑦𝐴))
1512, 14mpbird 257 . . . . 5 ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → 𝐴𝑦)
16 oawordeu 8496 . . . . 5 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴𝑦) → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝑦)
178, 10, 15, 16syl21anc 837 . . . 4 ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝑦)
18 eqcom 2736 . . . . 5 ((𝐴 +o 𝑥) = 𝑦𝑦 = (𝐴 +o 𝑥))
1918reubii 3360 . . . 4 (∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝑦 ↔ ∃!𝑥 ∈ On 𝑦 = (𝐴 +o 𝑥))
2017, 19sylib 218 . . 3 ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → ∃!𝑥 ∈ On 𝑦 = (𝐴 +o 𝑥))
2120ralrimiva 3125 . 2 (𝐴 ∈ On → ∀𝑦 ∈ (On ∖ 𝐴)∃!𝑥 ∈ On 𝑦 = (𝐴 +o 𝑥))
22 eqid 2729 . . 3 (𝑥 ∈ On ↦ (𝐴 +o 𝑥)) = (𝑥 ∈ On ↦ (𝐴 +o 𝑥))
2322f1ompt 7065 . 2 ((𝑥 ∈ On ↦ (𝐴 +o 𝑥)):On–1-1-onto→(On ∖ 𝐴) ↔ (∀𝑥 ∈ On (𝐴 +o 𝑥) ∈ (On ∖ 𝐴) ∧ ∀𝑦 ∈ (On ∖ 𝐴)∃!𝑥 ∈ On 𝑦 = (𝐴 +o 𝑥)))
247, 21, 23sylanbrc 583 1 (𝐴 ∈ On → (𝑥 ∈ On ↦ (𝐴 +o 𝑥)):On–1-1-onto→(On ∖ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3349  cdif 3908  wss 3911  cmpt 5183  Oncon0 6320  1-1-ontowf1o 6498  (class class class)co 7369   +o coa 8408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-oadd 8415
This theorem is referenced by:  oacomf1olem  8505
  Copyright terms: Public domain W3C validator