![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oaf1o | Structured version Visualization version GIF version |
Description: Left addition by a constant is a bijection from ordinals to ordinals greater than the constant. (Contributed by Mario Carneiro, 30-May-2015.) |
Ref | Expression |
---|---|
oaf1o | ⊢ (𝐴 ∈ On → (𝑥 ∈ On ↦ (𝐴 +o 𝑥)):On–1-1-onto→(On ∖ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oacl 7961 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +o 𝑥) ∈ On) | |
2 | oaword1 7978 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝑥)) | |
3 | ontri1 6061 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (𝐴 +o 𝑥) ∈ On) → (𝐴 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐴)) | |
4 | 1, 3 | syldan 583 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐴)) |
5 | 2, 4 | mpbid 224 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ¬ (𝐴 +o 𝑥) ∈ 𝐴) |
6 | 1, 5 | eldifd 3835 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +o 𝑥) ∈ (On ∖ 𝐴)) |
7 | 6 | ralrimiva 3127 | . 2 ⊢ (𝐴 ∈ On → ∀𝑥 ∈ On (𝐴 +o 𝑥) ∈ (On ∖ 𝐴)) |
8 | simpl 475 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → 𝐴 ∈ On) | |
9 | eldifi 3988 | . . . . . 6 ⊢ (𝑦 ∈ (On ∖ 𝐴) → 𝑦 ∈ On) | |
10 | 9 | adantl 474 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → 𝑦 ∈ On) |
11 | eldifn 3989 | . . . . . . 7 ⊢ (𝑦 ∈ (On ∖ 𝐴) → ¬ 𝑦 ∈ 𝐴) | |
12 | 11 | adantl 474 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → ¬ 𝑦 ∈ 𝐴) |
13 | ontri1 6061 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝐴)) | |
14 | 10, 13 | syldan 583 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → (𝐴 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝐴)) |
15 | 12, 14 | mpbird 249 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → 𝐴 ⊆ 𝑦) |
16 | oawordeu 7981 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴 ⊆ 𝑦) → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝑦) | |
17 | 8, 10, 15, 16 | syl21anc 826 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝑦) |
18 | eqcom 2780 | . . . . 5 ⊢ ((𝐴 +o 𝑥) = 𝑦 ↔ 𝑦 = (𝐴 +o 𝑥)) | |
19 | 18 | reubii 3326 | . . . 4 ⊢ (∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝑦 ↔ ∃!𝑥 ∈ On 𝑦 = (𝐴 +o 𝑥)) |
20 | 17, 19 | sylib 210 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ (On ∖ 𝐴)) → ∃!𝑥 ∈ On 𝑦 = (𝐴 +o 𝑥)) |
21 | 20 | ralrimiva 3127 | . 2 ⊢ (𝐴 ∈ On → ∀𝑦 ∈ (On ∖ 𝐴)∃!𝑥 ∈ On 𝑦 = (𝐴 +o 𝑥)) |
22 | eqid 2773 | . . 3 ⊢ (𝑥 ∈ On ↦ (𝐴 +o 𝑥)) = (𝑥 ∈ On ↦ (𝐴 +o 𝑥)) | |
23 | 22 | f1ompt 6697 | . 2 ⊢ ((𝑥 ∈ On ↦ (𝐴 +o 𝑥)):On–1-1-onto→(On ∖ 𝐴) ↔ (∀𝑥 ∈ On (𝐴 +o 𝑥) ∈ (On ∖ 𝐴) ∧ ∀𝑦 ∈ (On ∖ 𝐴)∃!𝑥 ∈ On 𝑦 = (𝐴 +o 𝑥))) |
24 | 7, 21, 23 | sylanbrc 575 | 1 ⊢ (𝐴 ∈ On → (𝑥 ∈ On ↦ (𝐴 +o 𝑥)):On–1-1-onto→(On ∖ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ∀wral 3083 ∃!wreu 3085 ∖ cdif 3821 ⊆ wss 3824 ↦ cmpt 5005 Oncon0 6027 –1-1-onto→wf1o 6185 (class class class)co 6975 +o coa 7901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-int 4747 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-oadd 7908 |
This theorem is referenced by: oacomf1olem 7990 |
Copyright terms: Public domain | W3C validator |