Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreu Structured version   Visualization version   GIF version

Theorem 2sqreu 26036
 Description: There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two nonnegative integers. See 2sqnn0 26018 for the existence of such a decomposition. (Contributed by AV, 4-Jun-2023.) (Revised by AV, 25-Jun-2023.)
Hypothesis
Ref Expression
2sqreu.1 (𝜑 ↔ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Assertion
Ref Expression
2sqreu ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0𝑎 ∈ ℕ0 𝜑))
Distinct variable group:   𝑃,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)

Proof of Theorem 2sqreu
StepHypRef Expression
1 2sqreulem1 26026 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
2 2sqreu.1 . . . . . 6 (𝜑 ↔ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
32bicomi 227 . . . . 5 ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ 𝜑)
43reubii 3383 . . . 4 (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 𝜑)
54reubii 3383 . . 3 (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 𝜑)
622sqreulem4 26034 . . . 4 𝑎 ∈ ℕ0 ∃*𝑏 ∈ ℕ0 𝜑
7 2reu1 3864 . . . 4 (∀𝑎 ∈ ℕ0 ∃*𝑏 ∈ ℕ0 𝜑 → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 𝜑 ↔ (∃!𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0𝑎 ∈ ℕ0 𝜑)))
86, 7mp1i 13 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 𝜑 ↔ (∃!𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0𝑎 ∈ ℕ0 𝜑)))
95, 8syl5bb 286 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (∃!𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0𝑎 ∈ ℕ0 𝜑)))
101, 9mpbid 235 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0𝑎 ∈ ℕ0 𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3133  ∃wrex 3134  ∃!wreu 3135  ∃*wrmo 3136   class class class wbr 5052  (class class class)co 7145  1c1 10530   + caddc 10532   ≤ cle 10668  2c2 11685  4c4 11687  ℕ0cn0 11890   mod cmo 13237  ↑cexp 13430  ℙcprime 16009 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7399  df-ofr 7400  df-om 7571  df-1st 7679  df-2nd 7680  df-supp 7821  df-tpos 7882  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-2o 8093  df-oadd 8096  df-er 8279  df-ec 8281  df-qs 8285  df-map 8398  df-pm 8399  df-ixp 8452  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-fsupp 8825  df-sup 8897  df-inf 8898  df-oi 8965  df-dju 9321  df-card 9359  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11693  df-3 11694  df-4 11695  df-5 11696  df-6 11697  df-7 11698  df-8 11699  df-9 11700  df-n0 11891  df-xnn0 11961  df-z 11975  df-dec 12092  df-uz 12237  df-q 12342  df-rp 12383  df-fz 12891  df-fzo 13034  df-fl 13162  df-mod 13238  df-seq 13370  df-exp 13431  df-hash 13692  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-dvds 15604  df-gcd 15838  df-prm 16010  df-phi 16097  df-pc 16168  df-gz 16260  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-0g 16711  df-gsum 16712  df-prds 16717  df-pws 16719  df-imas 16777  df-qus 16778  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-submnd 17953  df-grp 18102  df-minusg 18103  df-sbg 18104  df-mulg 18221  df-subg 18272  df-nsg 18273  df-eqg 18274  df-ghm 18352  df-cntz 18443  df-cmn 18904  df-abl 18905  df-mgp 19236  df-ur 19248  df-srg 19252  df-ring 19295  df-cring 19296  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-field 19498  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-sra 19937  df-rgmod 19938  df-lidl 19939  df-rsp 19940  df-2idl 19998  df-nzr 20024  df-rlreg 20049  df-domn 20050  df-idom 20051  df-assa 20078  df-asp 20079  df-ascl 20080  df-psr 20129  df-mvr 20130  df-mpl 20131  df-opsr 20133  df-evls 20279  df-evl 20280  df-psr1 20341  df-vr1 20342  df-ply1 20343  df-coe1 20344  df-evl1 20472  df-cnfld 20539  df-zring 20611  df-zrh 20644  df-zn 20647  df-mdeg 24652  df-deg1 24653  df-mon1 24727  df-uc1p 24728  df-q1p 24729  df-r1p 24730  df-lgs 25875 This theorem is referenced by:  2sqreuop  26042
 Copyright terms: Public domain W3C validator