MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreu Structured version   Visualization version   GIF version

Theorem 2sqreu 27455
Description: There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two nonnegative integers. See 2sqnn0 27437 for the existence of such a decomposition. (Contributed by AV, 4-Jun-2023.) (Revised by AV, 25-Jun-2023.)
Hypothesis
Ref Expression
2sqreu.1 (𝜑 ↔ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Assertion
Ref Expression
2sqreu ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0𝑎 ∈ ℕ0 𝜑))
Distinct variable group:   𝑃,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)

Proof of Theorem 2sqreu
StepHypRef Expression
1 2sqreulem1 27445 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
2 2sqreu.1 . . . . . 6 (𝜑 ↔ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
32bicomi 224 . . . . 5 ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ 𝜑)
43reubii 3373 . . . 4 (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 𝜑)
54reubii 3373 . . 3 (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 𝜑)
622sqreulem4 27453 . . . 4 𝑎 ∈ ℕ0 ∃*𝑏 ∈ ℕ0 𝜑
7 2reu1 3879 . . . 4 (∀𝑎 ∈ ℕ0 ∃*𝑏 ∈ ℕ0 𝜑 → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 𝜑 ↔ (∃!𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0𝑎 ∈ ℕ0 𝜑)))
86, 7mp1i 13 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 𝜑 ↔ (∃!𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0𝑎 ∈ ℕ0 𝜑)))
95, 8bitrid 283 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (∃!𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0𝑎 ∈ ℕ0 𝜑)))
101, 9mpbid 232 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0𝑎 ∈ ℕ0 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059  ∃!wreu 3362  ∃*wrmo 3363   class class class wbr 5125  (class class class)co 7414  1c1 11139   + caddc 11141  cle 11279  2c2 12304  4c4 12306  0cn0 12510   mod cmo 13892  cexp 14085  cprime 16691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217  ax-mulf 11218
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-iin 4976  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-ofr 7681  df-om 7871  df-1st 7997  df-2nd 7998  df-supp 8169  df-tpos 8234  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-2o 8490  df-oadd 8493  df-er 8728  df-ec 8730  df-qs 8734  df-map 8851  df-pm 8852  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fsupp 9385  df-sup 9465  df-inf 9466  df-oi 9533  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-xnn0 12584  df-z 12598  df-dec 12718  df-uz 12862  df-q 12974  df-rp 13018  df-fz 13531  df-fzo 13678  df-fl 13815  df-mod 13893  df-seq 14026  df-exp 14086  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-dvds 16274  df-gcd 16515  df-prm 16692  df-phi 16786  df-pc 16858  df-gz 16951  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17257  df-plusg 17290  df-mulr 17291  df-starv 17292  df-sca 17293  df-vsca 17294  df-ip 17295  df-tset 17296  df-ple 17297  df-ds 17299  df-unif 17300  df-hom 17301  df-cco 17302  df-0g 17462  df-gsum 17463  df-prds 17468  df-pws 17470  df-imas 17529  df-qus 17530  df-mre 17605  df-mrc 17606  df-acs 17608  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-mhm 18770  df-submnd 18771  df-grp 18928  df-minusg 18929  df-sbg 18930  df-mulg 19060  df-subg 19115  df-nsg 19116  df-eqg 19117  df-ghm 19205  df-cntz 19309  df-cmn 19773  df-abl 19774  df-mgp 20111  df-rng 20123  df-ur 20152  df-srg 20157  df-ring 20205  df-cring 20206  df-oppr 20307  df-dvdsr 20330  df-unit 20331  df-invr 20361  df-dvr 20374  df-rhm 20445  df-nzr 20486  df-subrng 20519  df-subrg 20543  df-rlreg 20667  df-domn 20668  df-idom 20669  df-drng 20704  df-field 20705  df-lmod 20833  df-lss 20903  df-lsp 20943  df-sra 21145  df-rgmod 21146  df-lidl 21185  df-rsp 21186  df-2idl 21227  df-cnfld 21332  df-zring 21425  df-zrh 21481  df-zn 21484  df-assa 21840  df-asp 21841  df-ascl 21842  df-psr 21896  df-mvr 21897  df-mpl 21898  df-opsr 21900  df-evls 22065  df-evl 22066  df-psr1 22148  df-vr1 22149  df-ply1 22150  df-coe1 22151  df-evl1 22287  df-mdeg 26049  df-deg1 26050  df-mon1 26125  df-uc1p 26126  df-q1p 26127  df-r1p 26128  df-lgs 27294
This theorem is referenced by:  2sqreuop  27461
  Copyright terms: Public domain W3C validator