| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgredg2vlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for usgredg2v 29173. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgredg2v.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| usgredg2v.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| usgredg2v.a | ⊢ 𝐴 = {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} |
| Ref | Expression |
|---|---|
| usgredg2vlem1 | ⊢ ((𝐺 ∈ USGraph ∧ 𝑌 ∈ 𝐴) → (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6886 | . . . 4 ⊢ (𝑥 = 𝑌 → (𝐸‘𝑥) = (𝐸‘𝑌)) | |
| 2 | 1 | eleq2d 2819 | . . 3 ⊢ (𝑥 = 𝑌 → (𝑁 ∈ (𝐸‘𝑥) ↔ 𝑁 ∈ (𝐸‘𝑌))) |
| 3 | usgredg2v.a | . . 3 ⊢ 𝐴 = {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} | |
| 4 | 2, 3 | elrab2 3678 | . 2 ⊢ (𝑌 ∈ 𝐴 ↔ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌))) |
| 5 | usgredg2v.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 6 | usgredg2v.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 7 | 5, 6 | usgredgreu 29164 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)) → ∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑁, 𝑧}) |
| 8 | prcom 4712 | . . . . . . 7 ⊢ {𝑁, 𝑧} = {𝑧, 𝑁} | |
| 9 | 8 | eqeq2i 2747 | . . . . . 6 ⊢ ((𝐸‘𝑌) = {𝑁, 𝑧} ↔ (𝐸‘𝑌) = {𝑧, 𝑁}) |
| 10 | 9 | reubii 3372 | . . . . 5 ⊢ (∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ↔ ∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) |
| 11 | 7, 10 | sylib 218 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)) → ∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) |
| 12 | 11 | 3expb 1120 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌))) → ∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) |
| 13 | riotacl 7387 | . . 3 ⊢ (∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁} → (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) ∈ 𝑉) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌))) → (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) ∈ 𝑉) |
| 15 | 4, 14 | sylan2b 594 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑌 ∈ 𝐴) → (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃!wreu 3361 {crab 3419 {cpr 4608 dom cdm 5665 ‘cfv 6541 ℩crio 7369 Vtxcvtx 28942 iEdgciedg 28943 USGraphcusgr 29095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-dju 9923 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-hash 14353 df-edg 28994 df-umgr 29029 df-usgr 29097 |
| This theorem is referenced by: usgredg2vlem2 29172 usgredg2v 29173 |
| Copyright terms: Public domain | W3C validator |