MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubeldm Structured version   Visualization version   GIF version

Theorem lubeldm 18250
Description: Member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
lubeldm.b 𝐡 = (Baseβ€˜πΎ)
lubeldm.l ≀ = (leβ€˜πΎ)
lubeldm.u π‘ˆ = (lubβ€˜πΎ)
lubeldm.p (πœ“ ↔ (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ π‘₯ ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧)))
lubeldm.k (πœ‘ β†’ 𝐾 ∈ 𝑉)
Assertion
Ref Expression
lubeldm (πœ‘ β†’ (𝑆 ∈ dom π‘ˆ ↔ (𝑆 βŠ† 𝐡 ∧ βˆƒ!π‘₯ ∈ 𝐡 πœ“)))
Distinct variable groups:   π‘₯,𝑧,𝐡   π‘₯,𝑦,𝐾,𝑧   π‘₯,𝑆,𝑦,𝑧
Allowed substitution hints:   πœ‘(π‘₯,𝑦,𝑧)   πœ“(π‘₯,𝑦,𝑧)   𝐡(𝑦)   π‘ˆ(π‘₯,𝑦,𝑧)   ≀ (π‘₯,𝑦,𝑧)   𝑉(π‘₯,𝑦,𝑧)

Proof of Theorem lubeldm
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lubeldm.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 lubeldm.l . . . 4 ≀ = (leβ€˜πΎ)
3 lubeldm.u . . . 4 π‘ˆ = (lubβ€˜πΎ)
4 biid 261 . . . 4 ((βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ π‘₯ ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧)) ↔ (βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ π‘₯ ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧)))
5 lubeldm.k . . . 4 (πœ‘ β†’ 𝐾 ∈ 𝑉)
61, 2, 3, 4, 5lubdm 18248 . . 3 (πœ‘ β†’ dom π‘ˆ = {𝑠 ∈ 𝒫 𝐡 ∣ βˆƒ!π‘₯ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ π‘₯ ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧))})
76eleq2d 2820 . 2 (πœ‘ β†’ (𝑆 ∈ dom π‘ˆ ↔ 𝑆 ∈ {𝑠 ∈ 𝒫 𝐡 ∣ βˆƒ!π‘₯ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ π‘₯ ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧))}))
8 raleq 3308 . . . . . . 7 (𝑠 = 𝑆 β†’ (βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ π‘₯ ↔ βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ π‘₯))
9 raleq 3308 . . . . . . . . 9 (𝑠 = 𝑆 β†’ (βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ 𝑧 ↔ βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ 𝑧))
109imbi1d 342 . . . . . . . 8 (𝑠 = 𝑆 β†’ ((βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧) ↔ (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧)))
1110ralbidv 3171 . . . . . . 7 (𝑠 = 𝑆 β†’ (βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧) ↔ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧)))
128, 11anbi12d 632 . . . . . 6 (𝑠 = 𝑆 β†’ ((βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ π‘₯ ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧)) ↔ (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ π‘₯ ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧))))
1312reubidv 3370 . . . . 5 (𝑠 = 𝑆 β†’ (βˆƒ!π‘₯ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ π‘₯ ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧)) ↔ βˆƒ!π‘₯ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ π‘₯ ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧))))
14 lubeldm.p . . . . . 6 (πœ“ ↔ (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ π‘₯ ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧)))
1514reubii 3361 . . . . 5 (βˆƒ!π‘₯ ∈ 𝐡 πœ“ ↔ βˆƒ!π‘₯ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ π‘₯ ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧)))
1613, 15bitr4di 289 . . . 4 (𝑠 = 𝑆 β†’ (βˆƒ!π‘₯ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ π‘₯ ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧)) ↔ βˆƒ!π‘₯ ∈ 𝐡 πœ“))
1716elrab 3649 . . 3 (𝑆 ∈ {𝑠 ∈ 𝒫 𝐡 ∣ βˆƒ!π‘₯ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ π‘₯ ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧))} ↔ (𝑆 ∈ 𝒫 𝐡 ∧ βˆƒ!π‘₯ ∈ 𝐡 πœ“))
181fvexi 6860 . . . . 5 𝐡 ∈ V
1918elpw2 5306 . . . 4 (𝑆 ∈ 𝒫 𝐡 ↔ 𝑆 βŠ† 𝐡)
2019anbi1i 625 . . 3 ((𝑆 ∈ 𝒫 𝐡 ∧ βˆƒ!π‘₯ ∈ 𝐡 πœ“) ↔ (𝑆 βŠ† 𝐡 ∧ βˆƒ!π‘₯ ∈ 𝐡 πœ“))
2117, 20bitri 275 . 2 (𝑆 ∈ {𝑠 ∈ 𝒫 𝐡 ∣ βˆƒ!π‘₯ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ π‘₯ ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑠 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧))} ↔ (𝑆 βŠ† 𝐡 ∧ βˆƒ!π‘₯ ∈ 𝐡 πœ“))
227, 21bitrdi 287 1 (πœ‘ β†’ (𝑆 ∈ dom π‘ˆ ↔ (𝑆 βŠ† 𝐡 ∧ βˆƒ!π‘₯ ∈ 𝐡 πœ“)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3061  βˆƒ!wreu 3350  {crab 3406   βŠ† wss 3914  π’« cpw 4564   class class class wbr 5109  dom cdm 5637  β€˜cfv 6500  Basecbs 17091  lecple 17148  lubclub 18206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-lub 18243
This theorem is referenced by:  lubelss  18251  lubeu  18252  lubval  18253  lublecl  18258  lubeldm2  47079  joindm3  47092
  Copyright terms: Public domain W3C validator