MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubeldm Structured version   Visualization version   GIF version

Theorem lubeldm 17449
Description: Member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
lubeldm.b 𝐵 = (Base‘𝐾)
lubeldm.l = (le‘𝐾)
lubeldm.u 𝑈 = (lub‘𝐾)
lubeldm.p (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
lubeldm.k (𝜑𝐾𝑉)
Assertion
Ref Expression
lubeldm (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝑦,𝐾,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑦)   𝑈(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem lubeldm
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lubeldm.b . . . 4 𝐵 = (Base‘𝐾)
2 lubeldm.l . . . 4 = (le‘𝐾)
3 lubeldm.u . . . 4 𝑈 = (lub‘𝐾)
4 biid 253 . . . 4 ((∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
5 lubeldm.k . . . 4 (𝜑𝐾𝑉)
61, 2, 3, 4, 5lubdm 17447 . . 3 (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})
76eleq2d 2851 . 2 (𝜑 → (𝑆 ∈ dom 𝑈𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))}))
8 raleq 3345 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑦 𝑥 ↔ ∀𝑦𝑆 𝑦 𝑥))
9 raleq 3345 . . . . . . . . 9 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑦 𝑧 ↔ ∀𝑦𝑆 𝑦 𝑧))
109imbi1d 334 . . . . . . . 8 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑦 𝑧𝑥 𝑧) ↔ (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
1110ralbidv 3147 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧) ↔ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
128, 11anbi12d 621 . . . . . 6 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))
1312reubidv 3329 . . . . 5 (𝑠 = 𝑆 → (∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ ∃!𝑥𝐵 (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))
14 lubeldm.p . . . . . 6 (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
1514reubii 3331 . . . . 5 (∃!𝑥𝐵 𝜓 ↔ ∃!𝑥𝐵 (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
1613, 15syl6bbr 281 . . . 4 (𝑠 = 𝑆 → (∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ ∃!𝑥𝐵 𝜓))
1716elrab 3595 . . 3 (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))} ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∃!𝑥𝐵 𝜓))
181fvexi 6513 . . . . 5 𝐵 ∈ V
1918elpw2 5104 . . . 4 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
2019anbi1i 614 . . 3 ((𝑆 ∈ 𝒫 𝐵 ∧ ∃!𝑥𝐵 𝜓) ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓))
2117, 20bitri 267 . 2 (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))} ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓))
227, 21syl6bb 279 1 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wral 3088  ∃!wreu 3090  {crab 3092  wss 3829  𝒫 cpw 4422   class class class wbr 4929  dom cdm 5407  cfv 6188  Basecbs 16339  lecple 16428  lubclub 17410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-lub 17442
This theorem is referenced by:  lubelss  17450  lubeu  17451  lubval  17452  lublecl  17457
  Copyright terms: Public domain W3C validator