MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubeldm Structured version   Visualization version   GIF version

Theorem lubeldm 17813
Description: Member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
lubeldm.b 𝐵 = (Base‘𝐾)
lubeldm.l = (le‘𝐾)
lubeldm.u 𝑈 = (lub‘𝐾)
lubeldm.p (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
lubeldm.k (𝜑𝐾𝑉)
Assertion
Ref Expression
lubeldm (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝑦,𝐾,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑦)   𝑈(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem lubeldm
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lubeldm.b . . . 4 𝐵 = (Base‘𝐾)
2 lubeldm.l . . . 4 = (le‘𝐾)
3 lubeldm.u . . . 4 𝑈 = (lub‘𝐾)
4 biid 264 . . . 4 ((∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
5 lubeldm.k . . . 4 (𝜑𝐾𝑉)
61, 2, 3, 4, 5lubdm 17811 . . 3 (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})
76eleq2d 2816 . 2 (𝜑 → (𝑆 ∈ dom 𝑈𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))}))
8 raleq 3309 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑦 𝑥 ↔ ∀𝑦𝑆 𝑦 𝑥))
9 raleq 3309 . . . . . . . . 9 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑦 𝑧 ↔ ∀𝑦𝑆 𝑦 𝑧))
109imbi1d 345 . . . . . . . 8 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑦 𝑧𝑥 𝑧) ↔ (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
1110ralbidv 3108 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧) ↔ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
128, 11anbi12d 634 . . . . . 6 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))
1312reubidv 3291 . . . . 5 (𝑠 = 𝑆 → (∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ ∃!𝑥𝐵 (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))
14 lubeldm.p . . . . . 6 (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
1514reubii 3293 . . . . 5 (∃!𝑥𝐵 𝜓 ↔ ∃!𝑥𝐵 (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
1613, 15bitr4di 292 . . . 4 (𝑠 = 𝑆 → (∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ ∃!𝑥𝐵 𝜓))
1716elrab 3591 . . 3 (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))} ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∃!𝑥𝐵 𝜓))
181fvexi 6709 . . . . 5 𝐵 ∈ V
1918elpw2 5223 . . . 4 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
2019anbi1i 627 . . 3 ((𝑆 ∈ 𝒫 𝐵 ∧ ∃!𝑥𝐵 𝜓) ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓))
2117, 20bitri 278 . 2 (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))} ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓))
227, 21bitrdi 290 1 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3051  ∃!wreu 3053  {crab 3055  wss 3853  𝒫 cpw 4499   class class class wbr 5039  dom cdm 5536  cfv 6358  Basecbs 16666  lecple 16756  lubclub 17770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-lub 17806
This theorem is referenced by:  lubelss  17814  lubeu  17815  lubval  17816  lublecl  17821  lubeldm2  45866  joindm3  45879
  Copyright terms: Public domain W3C validator