MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubeldm Structured version   Visualization version   GIF version

Theorem lubeldm 17579
Description: Member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
lubeldm.b 𝐵 = (Base‘𝐾)
lubeldm.l = (le‘𝐾)
lubeldm.u 𝑈 = (lub‘𝐾)
lubeldm.p (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
lubeldm.k (𝜑𝐾𝑉)
Assertion
Ref Expression
lubeldm (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝑦,𝐾,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑦)   𝑈(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem lubeldm
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lubeldm.b . . . 4 𝐵 = (Base‘𝐾)
2 lubeldm.l . . . 4 = (le‘𝐾)
3 lubeldm.u . . . 4 𝑈 = (lub‘𝐾)
4 biid 262 . . . 4 ((∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
5 lubeldm.k . . . 4 (𝜑𝐾𝑉)
61, 2, 3, 4, 5lubdm 17577 . . 3 (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})
76eleq2d 2895 . 2 (𝜑 → (𝑆 ∈ dom 𝑈𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))}))
8 raleq 3403 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑦 𝑥 ↔ ∀𝑦𝑆 𝑦 𝑥))
9 raleq 3403 . . . . . . . . 9 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑦 𝑧 ↔ ∀𝑦𝑆 𝑦 𝑧))
109imbi1d 343 . . . . . . . 8 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑦 𝑧𝑥 𝑧) ↔ (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
1110ralbidv 3194 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧) ↔ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
128, 11anbi12d 630 . . . . . 6 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))
1312reubidv 3387 . . . . 5 (𝑠 = 𝑆 → (∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ ∃!𝑥𝐵 (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))
14 lubeldm.p . . . . . 6 (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
1514reubii 3389 . . . . 5 (∃!𝑥𝐵 𝜓 ↔ ∃!𝑥𝐵 (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
1613, 15syl6bbr 290 . . . 4 (𝑠 = 𝑆 → (∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ ∃!𝑥𝐵 𝜓))
1716elrab 3677 . . 3 (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))} ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∃!𝑥𝐵 𝜓))
181fvexi 6677 . . . . 5 𝐵 ∈ V
1918elpw2 5239 . . . 4 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
2019anbi1i 623 . . 3 ((𝑆 ∈ 𝒫 𝐵 ∧ ∃!𝑥𝐵 𝜓) ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓))
2117, 20bitri 276 . 2 (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))} ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓))
227, 21syl6bb 288 1 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  ∃!wreu 3137  {crab 3139  wss 3933  𝒫 cpw 4535   class class class wbr 5057  dom cdm 5548  cfv 6348  Basecbs 16471  lecple 16560  lubclub 17540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-lub 17572
This theorem is referenced by:  lubelss  17580  lubeu  17581  lubval  17582  lublecl  17587
  Copyright terms: Public domain W3C validator