![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lubeldm | Structured version Visualization version GIF version |
Description: Member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018.) |
Ref | Expression |
---|---|
lubeldm.b | ⊢ 𝐵 = (Base‘𝐾) |
lubeldm.l | ⊢ ≤ = (le‘𝐾) |
lubeldm.u | ⊢ 𝑈 = (lub‘𝐾) |
lubeldm.p | ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |
lubeldm.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
Ref | Expression |
---|---|
lubeldm | ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubeldm.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lubeldm.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | lubeldm.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
4 | biid 253 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) | |
5 | lubeldm.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
6 | 1, 2, 3, 4, 5 | lubdm 17447 | . . 3 ⊢ (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))}) |
7 | 6 | eleq2d 2851 | . 2 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ 𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))})) |
8 | raleq 3345 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ↔ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) | |
9 | raleq 3345 | . . . . . . . . 9 ⊢ (𝑠 = 𝑆 → (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧)) | |
10 | 9 | imbi1d 334 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → ((∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |
11 | 10 | ralbidv 3147 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧) ↔ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |
12 | 8, 11 | anbi12d 621 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)))) |
13 | 12 | reubidv 3329 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)))) |
14 | lubeldm.p | . . . . . 6 ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) | |
15 | 14 | reubii 3331 | . . . . 5 ⊢ (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |
16 | 13, 15 | syl6bbr 281 | . . . 4 ⊢ (𝑠 = 𝑆 → (∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ∃!𝑥 ∈ 𝐵 𝜓)) |
17 | 16 | elrab 3595 | . . 3 ⊢ (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))} ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) |
18 | 1 | fvexi 6513 | . . . . 5 ⊢ 𝐵 ∈ V |
19 | 18 | elpw2 5104 | . . . 4 ⊢ (𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵) |
20 | 19 | anbi1i 614 | . . 3 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓) ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) |
21 | 17, 20 | bitri 267 | . 2 ⊢ (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))} ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) |
22 | 7, 21 | syl6bb 279 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∀wral 3088 ∃!wreu 3090 {crab 3092 ⊆ wss 3829 𝒫 cpw 4422 class class class wbr 4929 dom cdm 5407 ‘cfv 6188 Basecbs 16339 lecple 16428 lubclub 17410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-lub 17442 |
This theorem is referenced by: lubelss 17450 lubeu 17451 lubval 17452 lublecl 17457 |
Copyright terms: Public domain | W3C validator |