MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreunn Structured version   Visualization version   GIF version

Theorem 2sqreunn 26196
Description: There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two positive integers. See 2sqnn 26178 for the existence of such a decomposition. (Contributed by AV, 11-Jun-2023.) (Revised by AV, 25-Jun-2023.)
Hypothesis
Ref Expression
2sqreu.1 (𝜑 ↔ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Assertion
Ref Expression
2sqreunn ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝜑 ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ 𝜑))
Distinct variable group:   𝑃,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)

Proof of Theorem 2sqreunn
StepHypRef Expression
1 2sqreunnlem1 26188 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
2 2sqreu.1 . . . . . 6 (𝜑 ↔ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
32bicomi 227 . . . . 5 ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ 𝜑)
43reubii 3295 . . . 4 (∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ 𝜑)
54reubii 3295 . . 3 (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ 𝜑)
622sqreunnlem2 26194 . . . 4 𝑎 ∈ ℕ ∃*𝑏 ∈ ℕ 𝜑
7 2reu1 3789 . . . 4 (∀𝑎 ∈ ℕ ∃*𝑏 ∈ ℕ 𝜑 → (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ 𝜑 ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝜑 ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ 𝜑)))
86, 7mp1i 13 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ 𝜑 ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝜑 ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ 𝜑)))
95, 8syl5bb 286 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝜑 ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ 𝜑)))
101, 9mpbid 235 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝜑 ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wral 3054  wrex 3055  ∃!wreu 3056  ∃*wrmo 3057   class class class wbr 5031  (class class class)co 7173  1c1 10619   + caddc 10621  cle 10757  cn 11719  2c2 11774  4c4 11776   mod cmo 13331  cexp 13524  cprime 16115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-pre-sup 10696  ax-addf 10697  ax-mulf 10698
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-of 7428  df-ofr 7429  df-om 7603  df-1st 7717  df-2nd 7718  df-supp 7860  df-tpos 7924  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-2o 8135  df-oadd 8138  df-er 8323  df-ec 8325  df-qs 8329  df-map 8442  df-pm 8443  df-ixp 8511  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-fsupp 8910  df-sup 8982  df-inf 8983  df-oi 9050  df-dju 9406  df-card 9444  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-nn 11720  df-2 11782  df-3 11783  df-4 11784  df-5 11785  df-6 11786  df-7 11787  df-8 11788  df-9 11789  df-n0 11980  df-xnn0 12052  df-z 12066  df-dec 12183  df-uz 12328  df-q 12434  df-rp 12476  df-fz 12985  df-fzo 13128  df-fl 13256  df-mod 13332  df-seq 13464  df-exp 13525  df-hash 13786  df-cj 14551  df-re 14552  df-im 14553  df-sqrt 14687  df-abs 14688  df-dvds 15703  df-gcd 15941  df-prm 16116  df-phi 16206  df-pc 16277  df-gz 16369  df-struct 16591  df-ndx 16592  df-slot 16593  df-base 16595  df-sets 16596  df-ress 16597  df-plusg 16684  df-mulr 16685  df-starv 16686  df-sca 16687  df-vsca 16688  df-ip 16689  df-tset 16690  df-ple 16691  df-ds 16693  df-unif 16694  df-hom 16695  df-cco 16696  df-0g 16821  df-gsum 16822  df-prds 16827  df-pws 16829  df-imas 16887  df-qus 16888  df-mre 16963  df-mrc 16964  df-acs 16966  df-mgm 17971  df-sgrp 18020  df-mnd 18031  df-mhm 18075  df-submnd 18076  df-grp 18225  df-minusg 18226  df-sbg 18227  df-mulg 18346  df-subg 18397  df-nsg 18398  df-eqg 18399  df-ghm 18477  df-cntz 18568  df-cmn 19029  df-abl 19030  df-mgp 19362  df-ur 19374  df-srg 19378  df-ring 19421  df-cring 19422  df-oppr 19498  df-dvdsr 19516  df-unit 19517  df-invr 19547  df-dvr 19558  df-rnghom 19592  df-drng 19626  df-field 19627  df-subrg 19655  df-lmod 19758  df-lss 19826  df-lsp 19866  df-sra 20066  df-rgmod 20067  df-lidl 20068  df-rsp 20069  df-2idl 20127  df-nzr 20153  df-rlreg 20178  df-domn 20179  df-idom 20180  df-cnfld 20221  df-zring 20293  df-zrh 20327  df-zn 20330  df-assa 20672  df-asp 20673  df-ascl 20674  df-psr 20725  df-mvr 20726  df-mpl 20727  df-opsr 20729  df-evls 20889  df-evl 20890  df-psr1 20958  df-vr1 20959  df-ply1 20960  df-coe1 20961  df-evl1 21089  df-mdeg 24808  df-deg1 24809  df-mon1 24886  df-uc1p 24887  df-q1p 24888  df-r1p 24889  df-lgs 26034
This theorem is referenced by:  2sqreuopnn  26202
  Copyright terms: Public domain W3C validator