| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2sqreunnltb | Structured version Visualization version GIF version | ||
| Description: There exists a unique decomposition of a prime as a sum of squares of two different positive integers iff the prime is of the form 4𝑘 + 1. (Contributed by AV, 11-Jun-2023.) The prime needs not be odd, as observed by WL. (Revised by AV, 25-Jun-2023.) |
| Ref | Expression |
|---|---|
| 2sqreult.1 | ⊢ (𝜑 ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
| Ref | Expression |
|---|---|
| 2sqreunnltb | ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝜑 ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sqreunnltblem 27495 | . 2 ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) | |
| 2 | 2sqreult.1 | . . . . . 6 ⊢ (𝜑 ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | |
| 3 | 2 | bicomi 224 | . . . . 5 ⊢ ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ 𝜑) |
| 4 | 3 | reubii 3389 | . . . 4 ⊢ (∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ 𝜑) |
| 5 | 4 | reubii 3389 | . . 3 ⊢ (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ 𝜑) |
| 6 | 2 | 2sqreunnlem2 27499 | . . . 4 ⊢ ∀𝑎 ∈ ℕ ∃*𝑏 ∈ ℕ 𝜑 |
| 7 | 2reu1 3897 | . . . 4 ⊢ (∀𝑎 ∈ ℕ ∃*𝑏 ∈ ℕ 𝜑 → (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ 𝜑 ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝜑 ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ 𝜑))) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ 𝜑 ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝜑 ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ 𝜑)) |
| 9 | 5, 8 | bitri 275 | . 2 ⊢ (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝜑 ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ 𝜑)) |
| 10 | 1, 9 | bitrdi 287 | 1 ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝜑 ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 ∃!wreu 3378 ∃*wrmo 3379 class class class wbr 5143 (class class class)co 7431 1c1 11156 + caddc 11158 < clt 11295 ℕcn 12266 2c2 12321 4c4 12323 mod cmo 13909 ↑cexp 14102 ℙcprime 16708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 ax-mulf 11235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-er 8745 df-ec 8747 df-qs 8751 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-inf 9483 df-oi 9550 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-xnn0 12600 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-fz 13548 df-fzo 13695 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-dvds 16291 df-gcd 16532 df-prm 16709 df-phi 16803 df-pc 16875 df-gz 16968 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-0g 17486 df-gsum 17487 df-prds 17492 df-pws 17494 df-imas 17553 df-qus 17554 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-nsg 19142 df-eqg 19143 df-ghm 19231 df-cntz 19335 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-srg 20184 df-ring 20232 df-cring 20233 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-dvr 20401 df-rhm 20472 df-nzr 20513 df-subrng 20546 df-subrg 20570 df-rlreg 20694 df-domn 20695 df-idom 20696 df-drng 20731 df-field 20732 df-lmod 20860 df-lss 20930 df-lsp 20970 df-sra 21172 df-rgmod 21173 df-lidl 21218 df-rsp 21219 df-2idl 21260 df-cnfld 21365 df-zring 21458 df-zrh 21514 df-zn 21517 df-assa 21873 df-asp 21874 df-ascl 21875 df-psr 21929 df-mvr 21930 df-mpl 21931 df-opsr 21933 df-evls 22098 df-evl 22099 df-psr1 22181 df-vr1 22182 df-ply1 22183 df-coe1 22184 df-evl1 22320 df-mdeg 26094 df-deg1 26095 df-mon1 26170 df-uc1p 26171 df-q1p 26172 df-r1p 26173 df-lgs 27339 |
| This theorem is referenced by: 2sqreuopnnltb 27511 sq2reunnltb 32504 |
| Copyright terms: Public domain | W3C validator |