MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbeldm Structured version   Visualization version   GIF version

Theorem glbeldm 18436
Description: Member of the domain of the greatest lower bound function of a poset. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
glbeldm.b 𝐵 = (Base‘𝐾)
glbeldm.l = (le‘𝐾)
glbeldm.g 𝐺 = (glb‘𝐾)
glbeldm.p (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
glbeldm.k (𝜑𝐾𝑉)
Assertion
Ref Expression
glbeldm (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝑦,𝐾,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑦)   𝐺(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem glbeldm
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 glbeldm.b . . . 4 𝐵 = (Base‘𝐾)
2 glbeldm.l . . . 4 = (le‘𝐾)
3 glbeldm.g . . . 4 𝐺 = (glb‘𝐾)
4 biid 261 . . . 4 ((∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
5 glbeldm.k . . . 4 (𝜑𝐾𝑉)
61, 2, 3, 4, 5glbdm 18434 . . 3 (𝜑 → dom 𝐺 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})
76eleq2d 2830 . 2 (𝜑 → (𝑆 ∈ dom 𝐺𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))}))
8 raleq 3331 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑥 𝑦 ↔ ∀𝑦𝑆 𝑥 𝑦))
9 raleq 3331 . . . . . . . . 9 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑧 𝑦 ↔ ∀𝑦𝑆 𝑧 𝑦))
109imbi1d 341 . . . . . . . 8 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑧 𝑦𝑧 𝑥) ↔ (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
1110ralbidv 3184 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥) ↔ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
128, 11anbi12d 631 . . . . . 6 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))))
1312reubidv 3406 . . . . 5 (𝑠 = 𝑆 → (∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ ∃!𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))))
14 glbeldm.p . . . . . 6 (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
1514reubii 3397 . . . . 5 (∃!𝑥𝐵 𝜓 ↔ ∃!𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
1613, 15bitr4di 289 . . . 4 (𝑠 = 𝑆 → (∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ ∃!𝑥𝐵 𝜓))
1716elrab 3708 . . 3 (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))} ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∃!𝑥𝐵 𝜓))
181fvexi 6934 . . . . 5 𝐵 ∈ V
1918elpw2 5352 . . . 4 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
2019anbi1i 623 . . 3 ((𝑆 ∈ 𝒫 𝐵 ∧ ∃!𝑥𝐵 𝜓) ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓))
2117, 20bitri 275 . 2 (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))} ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓))
227, 21bitrdi 287 1 (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  ∃!wreu 3386  {crab 3443  wss 3976  𝒫 cpw 4622   class class class wbr 5166  dom cdm 5700  cfv 6573  Basecbs 17258  lecple 17318  glbcglb 18380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-glb 18417
This theorem is referenced by:  glbelss  18437  glbeu  18438  glbval  18439  glbeldm2  48637  meetdm3  48651
  Copyright terms: Public domain W3C validator