Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > glbeldm | Structured version Visualization version GIF version |
Description: Member of the domain of the greatest lower bound function of a poset. (Contributed by NM, 7-Sep-2018.) |
Ref | Expression |
---|---|
glbeldm.b | ⊢ 𝐵 = (Base‘𝐾) |
glbeldm.l | ⊢ ≤ = (le‘𝐾) |
glbeldm.g | ⊢ 𝐺 = (glb‘𝐾) |
glbeldm.p | ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
glbeldm.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
Ref | Expression |
---|---|
glbeldm | ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | glbeldm.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | glbeldm.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | glbeldm.g | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
4 | biid 260 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) | |
5 | glbeldm.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
6 | 1, 2, 3, 4, 5 | glbdm 18082 | . . 3 ⊢ (𝜑 → dom 𝐺 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))}) |
7 | 6 | eleq2d 2824 | . 2 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ 𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))})) |
8 | raleq 3342 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦)) | |
9 | raleq 3342 | . . . . . . . . 9 ⊢ (𝑠 = 𝑆 → (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦)) | |
10 | 9 | imbi1d 342 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → ((∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥) ↔ (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
11 | 10 | ralbidv 3112 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥) ↔ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
12 | 8, 11 | anbi12d 631 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
13 | 12 | reubidv 3323 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
14 | glbeldm.p | . . . . . 6 ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) | |
15 | 14 | reubii 3325 | . . . . 5 ⊢ (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
16 | 13, 15 | bitr4di 289 | . . . 4 ⊢ (𝑠 = 𝑆 → (∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ∃!𝑥 ∈ 𝐵 𝜓)) |
17 | 16 | elrab 3624 | . . 3 ⊢ (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))} ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) |
18 | 1 | fvexi 6788 | . . . . 5 ⊢ 𝐵 ∈ V |
19 | 18 | elpw2 5269 | . . . 4 ⊢ (𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵) |
20 | 19 | anbi1i 624 | . . 3 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓) ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) |
21 | 17, 20 | bitri 274 | . 2 ⊢ (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))} ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) |
22 | 7, 21 | bitrdi 287 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃!wreu 3066 {crab 3068 ⊆ wss 3887 𝒫 cpw 4533 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 Basecbs 16912 lecple 16969 glbcglb 18028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-glb 18065 |
This theorem is referenced by: glbelss 18085 glbeu 18086 glbval 18087 glbeldm2 46251 meetdm3 46265 |
Copyright terms: Public domain | W3C validator |