MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbeldm Structured version   Visualization version   GIF version

Theorem glbeldm 18278
Description: Member of the domain of the greatest lower bound function of a poset. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
glbeldm.b 𝐵 = (Base‘𝐾)
glbeldm.l = (le‘𝐾)
glbeldm.g 𝐺 = (glb‘𝐾)
glbeldm.p (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
glbeldm.k (𝜑𝐾𝑉)
Assertion
Ref Expression
glbeldm (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝑦,𝐾,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑦)   𝐺(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem glbeldm
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 glbeldm.b . . . 4 𝐵 = (Base‘𝐾)
2 glbeldm.l . . . 4 = (le‘𝐾)
3 glbeldm.g . . . 4 𝐺 = (glb‘𝐾)
4 biid 261 . . . 4 ((∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
5 glbeldm.k . . . 4 (𝜑𝐾𝑉)
61, 2, 3, 4, 5glbdm 18276 . . 3 (𝜑 → dom 𝐺 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})
76eleq2d 2819 . 2 (𝜑 → (𝑆 ∈ dom 𝐺𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))}))
8 raleq 3290 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑥 𝑦 ↔ ∀𝑦𝑆 𝑥 𝑦))
9 raleq 3290 . . . . . . . . 9 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑧 𝑦 ↔ ∀𝑦𝑆 𝑧 𝑦))
109imbi1d 341 . . . . . . . 8 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑧 𝑦𝑧 𝑥) ↔ (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
1110ralbidv 3156 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥) ↔ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
128, 11anbi12d 632 . . . . . 6 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))))
1312reubidv 3363 . . . . 5 (𝑠 = 𝑆 → (∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ ∃!𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))))
14 glbeldm.p . . . . . 6 (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
1514reubii 3356 . . . . 5 (∃!𝑥𝐵 𝜓 ↔ ∃!𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
1613, 15bitr4di 289 . . . 4 (𝑠 = 𝑆 → (∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ ∃!𝑥𝐵 𝜓))
1716elrab 3643 . . 3 (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))} ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∃!𝑥𝐵 𝜓))
181fvexi 6845 . . . . 5 𝐵 ∈ V
1918elpw2 5276 . . . 4 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
2019anbi1i 624 . . 3 ((𝑆 ∈ 𝒫 𝐵 ∧ ∃!𝑥𝐵 𝜓) ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓))
2117, 20bitri 275 . 2 (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))} ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓))
227, 21bitrdi 287 1 (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  ∃!wreu 3345  {crab 3396  wss 3898  𝒫 cpw 4551   class class class wbr 5095  dom cdm 5621  cfv 6489  Basecbs 17127  lecple 17175  glbcglb 18224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-glb 18259
This theorem is referenced by:  glbelss  18279  glbeu  18280  glbval  18281  glbeldm2  49118  meetdm3  49132
  Copyright terms: Public domain W3C validator