HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem3 Structured version   Visualization version   GIF version

Theorem cnlnadjlem3 29630
Description: Lemma for cnlnadji 29637. By riesz4 29625, 𝐵 is the unique vector such that (𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) for all 𝑣. (Contributed by NM, 17-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
cnlnadjlem.4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
Assertion
Ref Expression
cnlnadjlem3 (𝑦 ∈ ℋ → 𝐵 ∈ ℋ)
Distinct variable groups:   𝑣,𝑔,𝑤,𝑦,𝑇   𝑣,𝐺,𝑤
Allowed substitution hints:   𝐵(𝑦,𝑤,𝑣,𝑔)   𝐺(𝑦,𝑔)

Proof of Theorem cnlnadjlem3
StepHypRef Expression
1 cnlnadjlem.4 . 2 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
2 cnlnadjlem.1 . . . . . . 7 𝑇 ∈ LinOp
3 cnlnadjlem.2 . . . . . . 7 𝑇 ∈ ContOp
4 cnlnadjlem.3 . . . . . . 7 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
52, 3, 4cnlnadjlem2 29629 . . . . . 6 (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn))
6 elin 4059 . . . . . 6 (𝐺 ∈ (LinFn ∩ ContFn) ↔ (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn))
75, 6sylibr 226 . . . . 5 (𝑦 ∈ ℋ → 𝐺 ∈ (LinFn ∩ ContFn))
8 riesz4 29625 . . . . 5 (𝐺 ∈ (LinFn ∩ ContFn) → ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝐺𝑣) = (𝑣 ·ih 𝑤))
97, 8syl 17 . . . 4 (𝑦 ∈ ℋ → ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝐺𝑣) = (𝑣 ·ih 𝑤))
102, 3, 4cnlnadjlem1 29628 . . . . . . 7 (𝑣 ∈ ℋ → (𝐺𝑣) = ((𝑇𝑣) ·ih 𝑦))
1110eqeq1d 2780 . . . . . 6 (𝑣 ∈ ℋ → ((𝐺𝑣) = (𝑣 ·ih 𝑤) ↔ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)))
1211ralbiia 3114 . . . . 5 (∀𝑣 ∈ ℋ (𝐺𝑣) = (𝑣 ·ih 𝑤) ↔ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
1312reubii 3331 . . . 4 (∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝐺𝑣) = (𝑣 ·ih 𝑤) ↔ ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
149, 13sylib 210 . . 3 (𝑦 ∈ ℋ → ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
15 riotacl 6953 . . 3 (∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) → (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) ∈ ℋ)
1614, 15syl 17 . 2 (𝑦 ∈ ℋ → (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) ∈ ℋ)
171, 16syl5eqel 2870 1 (𝑦 ∈ ℋ → 𝐵 ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  wral 3088  ∃!wreu 3090  cin 3830  cmpt 5009  cfv 6190  crio 6938  (class class class)co 6978  chba 28478   ·ih csp 28481  ContOpccop 28505  LinOpclo 28506  ContFnccnfn 28512  LinFnclf 28513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-inf2 8900  ax-cc 9657  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-pre-sup 10415  ax-addf 10416  ax-mulf 10417  ax-hilex 28558  ax-hfvadd 28559  ax-hvcom 28560  ax-hvass 28561  ax-hv0cl 28562  ax-hvaddid 28563  ax-hfvmul 28564  ax-hvmulid 28565  ax-hvmulass 28566  ax-hvdistr1 28567  ax-hvdistr2 28568  ax-hvmul0 28569  ax-hfi 28638  ax-his1 28641  ax-his2 28642  ax-his3 28643  ax-his4 28644  ax-hcompl 28761
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-iin 4796  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-se 5368  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-isom 6199  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-of 7229  df-om 7399  df-1st 7503  df-2nd 7504  df-supp 7636  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-2o 7908  df-oadd 7911  df-omul 7912  df-er 8091  df-map 8210  df-pm 8211  df-ixp 8262  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-fsupp 8631  df-fi 8672  df-sup 8703  df-inf 8704  df-oi 8771  df-card 9164  df-acn 9167  df-cda 9390  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-2 11506  df-3 11507  df-4 11508  df-5 11509  df-6 11510  df-7 11511  df-8 11512  df-9 11513  df-n0 11711  df-z 11797  df-dec 11915  df-uz 12062  df-q 12166  df-rp 12208  df-xneg 12327  df-xadd 12328  df-xmul 12329  df-ioo 12561  df-ico 12563  df-icc 12564  df-fz 12712  df-fzo 12853  df-fl 12980  df-seq 13188  df-exp 13248  df-hash 13509  df-cj 14322  df-re 14323  df-im 14324  df-sqrt 14458  df-abs 14459  df-clim 14709  df-rlim 14710  df-sum 14907  df-struct 16344  df-ndx 16345  df-slot 16346  df-base 16348  df-sets 16349  df-ress 16350  df-plusg 16437  df-mulr 16438  df-starv 16439  df-sca 16440  df-vsca 16441  df-ip 16442  df-tset 16443  df-ple 16444  df-ds 16446  df-unif 16447  df-hom 16448  df-cco 16449  df-rest 16555  df-topn 16556  df-0g 16574  df-gsum 16575  df-topgen 16576  df-pt 16577  df-prds 16580  df-xrs 16634  df-qtop 16639  df-imas 16640  df-xps 16642  df-mre 16718  df-mrc 16719  df-acs 16721  df-mgm 17713  df-sgrp 17755  df-mnd 17766  df-submnd 17807  df-mulg 18015  df-cntz 18221  df-cmn 18671  df-psmet 20242  df-xmet 20243  df-met 20244  df-bl 20245  df-mopn 20246  df-fbas 20247  df-fg 20248  df-cnfld 20251  df-top 21209  df-topon 21226  df-topsp 21248  df-bases 21261  df-cld 21334  df-ntr 21335  df-cls 21336  df-nei 21413  df-cn 21542  df-cnp 21543  df-lm 21544  df-t1 21629  df-haus 21630  df-tx 21877  df-hmeo 22070  df-fil 22161  df-fm 22253  df-flim 22254  df-flf 22255  df-xms 22636  df-ms 22637  df-tms 22638  df-cfil 23564  df-cau 23565  df-cmet 23566  df-grpo 28050  df-gid 28051  df-ginv 28052  df-gdiv 28053  df-ablo 28102  df-vc 28116  df-nv 28149  df-va 28152  df-ba 28153  df-sm 28154  df-0v 28155  df-vs 28156  df-nmcv 28157  df-ims 28158  df-dip 28258  df-ssp 28279  df-ph 28370  df-cbn 28421  df-hnorm 28527  df-hba 28528  df-hvsub 28530  df-hlim 28531  df-hcau 28532  df-sh 28766  df-ch 28780  df-oc 28811  df-ch0 28812  df-nmop 29400  df-cnop 29401  df-lnop 29402  df-nmfn 29406  df-nlfn 29407  df-cnfn 29408  df-lnfn 29409
This theorem is referenced by:  cnlnadjlem4  29631  cnlnadjlem6  29633
  Copyright terms: Public domain W3C validator