HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem3 Structured version   Visualization version   GIF version

Theorem cnlnadjlem3 32114
Description: Lemma for cnlnadji 32121. By riesz4 32109, 𝐵 is the unique vector such that (𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) for all 𝑣. (Contributed by NM, 17-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
cnlnadjlem.4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
Assertion
Ref Expression
cnlnadjlem3 (𝑦 ∈ ℋ → 𝐵 ∈ ℋ)
Distinct variable groups:   𝑣,𝑔,𝑤,𝑦,𝑇   𝑣,𝐺,𝑤
Allowed substitution hints:   𝐵(𝑦,𝑤,𝑣,𝑔)   𝐺(𝑦,𝑔)

Proof of Theorem cnlnadjlem3
StepHypRef Expression
1 cnlnadjlem.4 . 2 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
2 cnlnadjlem.1 . . . . . . 7 𝑇 ∈ LinOp
3 cnlnadjlem.2 . . . . . . 7 𝑇 ∈ ContOp
4 cnlnadjlem.3 . . . . . . 7 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
52, 3, 4cnlnadjlem2 32113 . . . . . 6 (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn))
6 elin 3982 . . . . . 6 (𝐺 ∈ (LinFn ∩ ContFn) ↔ (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn))
75, 6sylibr 234 . . . . 5 (𝑦 ∈ ℋ → 𝐺 ∈ (LinFn ∩ ContFn))
8 riesz4 32109 . . . . 5 (𝐺 ∈ (LinFn ∩ ContFn) → ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝐺𝑣) = (𝑣 ·ih 𝑤))
97, 8syl 17 . . . 4 (𝑦 ∈ ℋ → ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝐺𝑣) = (𝑣 ·ih 𝑤))
102, 3, 4cnlnadjlem1 32112 . . . . . . 7 (𝑣 ∈ ℋ → (𝐺𝑣) = ((𝑇𝑣) ·ih 𝑦))
1110eqeq1d 2739 . . . . . 6 (𝑣 ∈ ℋ → ((𝐺𝑣) = (𝑣 ·ih 𝑤) ↔ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)))
1211ralbiia 3091 . . . . 5 (∀𝑣 ∈ ℋ (𝐺𝑣) = (𝑣 ·ih 𝑤) ↔ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
1312reubii 3389 . . . 4 (∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝐺𝑣) = (𝑣 ·ih 𝑤) ↔ ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
149, 13sylib 218 . . 3 (𝑦 ∈ ℋ → ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
15 riotacl 7412 . . 3 (∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) → (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) ∈ ℋ)
1614, 15syl 17 . 2 (𝑦 ∈ ℋ → (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) ∈ ℋ)
171, 16eqeltrid 2845 1 (𝑦 ∈ ℋ → 𝐵 ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3061  ∃!wreu 3378  cin 3965  cmpt 5234  cfv 6569  crio 7394  (class class class)co 7438  chba 30964   ·ih csp 30967  ContOpccop 30991  LinOpclo 30992  ContFnccnfn 30998  LinFnclf 30999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-inf2 9688  ax-cc 10482  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240  ax-addf 11241  ax-mulf 11242  ax-hilex 31044  ax-hfvadd 31045  ax-hvcom 31046  ax-hvass 31047  ax-hv0cl 31048  ax-hvaddid 31049  ax-hfvmul 31050  ax-hvmulid 31051  ax-hvmulass 31052  ax-hvdistr1 31053  ax-hvdistr2 31054  ax-hvmul0 31055  ax-hfi 31124  ax-his1 31127  ax-his2 31128  ax-his3 31129  ax-his4 31130  ax-hcompl 31247
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-iin 5002  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-se 5646  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-isom 6578  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-of 7704  df-om 7895  df-1st 8022  df-2nd 8023  df-supp 8194  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-2o 8515  df-oadd 8518  df-omul 8519  df-er 8753  df-map 8876  df-pm 8877  df-ixp 8946  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-fsupp 9409  df-fi 9458  df-sup 9489  df-inf 9490  df-oi 9557  df-card 9986  df-acn 9989  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-dec 12741  df-uz 12886  df-q 12998  df-rp 13042  df-xneg 13161  df-xadd 13162  df-xmul 13163  df-ioo 13397  df-ico 13399  df-icc 13400  df-fz 13554  df-fzo 13701  df-fl 13838  df-seq 14049  df-exp 14109  df-hash 14376  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-clim 15530  df-rlim 15531  df-sum 15729  df-struct 17190  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-ress 17284  df-plusg 17320  df-mulr 17321  df-starv 17322  df-sca 17323  df-vsca 17324  df-ip 17325  df-tset 17326  df-ple 17327  df-ds 17329  df-unif 17330  df-hom 17331  df-cco 17332  df-rest 17478  df-topn 17479  df-0g 17497  df-gsum 17498  df-topgen 17499  df-pt 17500  df-prds 17503  df-xrs 17558  df-qtop 17563  df-imas 17564  df-xps 17566  df-mre 17640  df-mrc 17641  df-acs 17643  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21383  df-xmet 21384  df-met 21385  df-bl 21386  df-mopn 21387  df-fbas 21388  df-fg 21389  df-cnfld 21392  df-top 22925  df-topon 22942  df-topsp 22964  df-bases 22978  df-cld 23052  df-ntr 23053  df-cls 23054  df-nei 23131  df-cn 23260  df-cnp 23261  df-lm 23262  df-t1 23347  df-haus 23348  df-tx 23595  df-hmeo 23788  df-fil 23879  df-fm 23971  df-flim 23972  df-flf 23973  df-xms 24355  df-ms 24356  df-tms 24357  df-cfil 25314  df-cau 25315  df-cmet 25316  df-grpo 30538  df-gid 30539  df-ginv 30540  df-gdiv 30541  df-ablo 30590  df-vc 30604  df-nv 30637  df-va 30640  df-ba 30641  df-sm 30642  df-0v 30643  df-vs 30644  df-nmcv 30645  df-ims 30646  df-dip 30746  df-ssp 30767  df-ph 30858  df-cbn 30908  df-hnorm 31013  df-hba 31014  df-hvsub 31016  df-hlim 31017  df-hcau 31018  df-sh 31252  df-ch 31266  df-oc 31297  df-ch0 31298  df-nmop 31884  df-cnop 31885  df-lnop 31886  df-nmfn 31890  df-nlfn 31891  df-cnfn 31892  df-lnfn 31893
This theorem is referenced by:  cnlnadjlem4  32115  cnlnadjlem6  32117
  Copyright terms: Public domain W3C validator