![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2sqreult | Structured version Visualization version GIF version |
Description: There exists a unique decomposition of a prime as a sum of squares of two different nonnegative integers. (Contributed by AV, 8-Jun-2023.) (Proposed by GL, 8-Jun-2023.) (Revised by AV, 25-Jun-2023.) |
Ref | Expression |
---|---|
2sqreult.1 | ⊢ (𝜑 ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
Ref | Expression |
---|---|
2sqreult | ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sqreultlem 27373 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | |
2 | 2sqreult.1 | . . . . . 6 ⊢ (𝜑 ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | |
3 | 2 | bicomi 223 | . . . . 5 ⊢ ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ 𝜑) |
4 | 3 | reubii 3380 | . . . 4 ⊢ (∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 𝜑) |
5 | 4 | reubii 3380 | . . 3 ⊢ (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 𝜑) |
6 | 2 | 2sqreulem4 27380 | . . . 4 ⊢ ∀𝑎 ∈ ℕ0 ∃*𝑏 ∈ ℕ0 𝜑 |
7 | 2reu1 3887 | . . . 4 ⊢ (∀𝑎 ∈ ℕ0 ∃*𝑏 ∈ ℕ0 𝜑 → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 𝜑 ↔ (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 𝜑))) | |
8 | 6, 7 | mp1i 13 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 𝜑 ↔ (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 𝜑))) |
9 | 5, 8 | bitrid 283 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 𝜑))) |
10 | 1, 9 | mpbid 231 | 1 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ∃wrex 3065 ∃!wreu 3369 ∃*wrmo 3370 class class class wbr 5142 (class class class)co 7414 1c1 11133 + caddc 11135 < clt 11272 2c2 12291 4c4 12293 ℕ0cn0 12496 mod cmo 13860 ↑cexp 14052 ℙcprime 16635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 ax-addf 11211 ax-mulf 11212 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-ofr 7680 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8718 df-ec 8720 df-qs 8724 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-sup 9459 df-inf 9460 df-oi 9527 df-dju 9918 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-xnn0 12569 df-z 12583 df-dec 12702 df-uz 12847 df-q 12957 df-rp 13001 df-fz 13511 df-fzo 13654 df-fl 13783 df-mod 13861 df-seq 13993 df-exp 14053 df-hash 14316 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16225 df-gcd 16463 df-prm 16636 df-phi 16728 df-pc 16799 df-gz 16892 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-0g 17416 df-gsum 17417 df-prds 17422 df-pws 17424 df-imas 17483 df-qus 17484 df-mre 17559 df-mrc 17560 df-acs 17562 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-mhm 18733 df-submnd 18734 df-grp 18886 df-minusg 18887 df-sbg 18888 df-mulg 19017 df-subg 19071 df-nsg 19072 df-eqg 19073 df-ghm 19161 df-cntz 19261 df-cmn 19730 df-abl 19731 df-mgp 20068 df-rng 20086 df-ur 20115 df-srg 20120 df-ring 20168 df-cring 20169 df-oppr 20266 df-dvdsr 20289 df-unit 20290 df-invr 20320 df-dvr 20333 df-rhm 20404 df-nzr 20445 df-subrng 20476 df-subrg 20501 df-drng 20619 df-field 20620 df-lmod 20738 df-lss 20809 df-lsp 20849 df-sra 21051 df-rgmod 21052 df-lidl 21097 df-rsp 21098 df-2idl 21137 df-rlreg 21223 df-domn 21224 df-idom 21225 df-cnfld 21273 df-zring 21366 df-zrh 21422 df-zn 21425 df-assa 21780 df-asp 21781 df-ascl 21782 df-psr 21835 df-mvr 21836 df-mpl 21837 df-opsr 21839 df-evls 22011 df-evl 22012 df-psr1 22092 df-vr1 22093 df-ply1 22094 df-coe1 22095 df-evl1 22228 df-mdeg 25981 df-deg1 25982 df-mon1 26059 df-uc1p 26060 df-q1p 26061 df-r1p 26062 df-lgs 27221 |
This theorem is referenced by: 2sqreuoplt 27390 |
Copyright terms: Public domain | W3C validator |