Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2sqreult | Structured version Visualization version GIF version |
Description: There exists a unique decomposition of a prime as a sum of squares of two different nonnegative integers. (Contributed by AV, 8-Jun-2023.) (Proposed by GL, 8-Jun-2023.) (Revised by AV, 25-Jun-2023.) |
Ref | Expression |
---|---|
2sqreult.1 | ⊢ (𝜑 ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
Ref | Expression |
---|---|
2sqreult | ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sqreultlem 26175 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | |
2 | 2sqreult.1 | . . . . . 6 ⊢ (𝜑 ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | |
3 | 2 | bicomi 227 | . . . . 5 ⊢ ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ 𝜑) |
4 | 3 | reubii 3293 | . . . 4 ⊢ (∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 𝜑) |
5 | 4 | reubii 3293 | . . 3 ⊢ (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 𝜑) |
6 | 2 | 2sqreulem4 26182 | . . . 4 ⊢ ∀𝑎 ∈ ℕ0 ∃*𝑏 ∈ ℕ0 𝜑 |
7 | 2reu1 3786 | . . . 4 ⊢ (∀𝑎 ∈ ℕ0 ∃*𝑏 ∈ ℕ0 𝜑 → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 𝜑 ↔ (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 𝜑))) | |
8 | 6, 7 | mp1i 13 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 𝜑 ↔ (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 𝜑))) |
9 | 5, 8 | syl5bb 286 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 𝜑))) |
10 | 1, 9 | mpbid 235 | 1 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ∀wral 3053 ∃wrex 3054 ∃!wreu 3055 ∃*wrmo 3056 class class class wbr 5027 (class class class)co 7164 1c1 10609 + caddc 10611 < clt 10746 2c2 11764 4c4 11766 ℕ0cn0 11969 mod cmo 13321 ↑cexp 13514 ℙcprime 16105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 ax-pre-sup 10686 ax-addf 10687 ax-mulf 10688 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-iin 4881 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-se 5479 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-isom 6342 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-of 7419 df-ofr 7420 df-om 7594 df-1st 7707 df-2nd 7708 df-supp 7850 df-tpos 7914 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-2o 8125 df-oadd 8128 df-er 8313 df-ec 8315 df-qs 8319 df-map 8432 df-pm 8433 df-ixp 8501 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-fsupp 8900 df-sup 8972 df-inf 8973 df-oi 9040 df-dju 9396 df-card 9434 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-div 11369 df-nn 11710 df-2 11772 df-3 11773 df-4 11774 df-5 11775 df-6 11776 df-7 11777 df-8 11778 df-9 11779 df-n0 11970 df-xnn0 12042 df-z 12056 df-dec 12173 df-uz 12318 df-q 12424 df-rp 12466 df-fz 12975 df-fzo 13118 df-fl 13246 df-mod 13322 df-seq 13454 df-exp 13515 df-hash 13776 df-cj 14541 df-re 14542 df-im 14543 df-sqrt 14677 df-abs 14678 df-dvds 15693 df-gcd 15931 df-prm 16106 df-phi 16196 df-pc 16267 df-gz 16359 df-struct 16581 df-ndx 16582 df-slot 16583 df-base 16585 df-sets 16586 df-ress 16587 df-plusg 16674 df-mulr 16675 df-starv 16676 df-sca 16677 df-vsca 16678 df-ip 16679 df-tset 16680 df-ple 16681 df-ds 16683 df-unif 16684 df-hom 16685 df-cco 16686 df-0g 16811 df-gsum 16812 df-prds 16817 df-pws 16819 df-imas 16877 df-qus 16878 df-mre 16953 df-mrc 16954 df-acs 16956 df-mgm 17961 df-sgrp 18010 df-mnd 18021 df-mhm 18065 df-submnd 18066 df-grp 18215 df-minusg 18216 df-sbg 18217 df-mulg 18336 df-subg 18387 df-nsg 18388 df-eqg 18389 df-ghm 18467 df-cntz 18558 df-cmn 19019 df-abl 19020 df-mgp 19352 df-ur 19364 df-srg 19368 df-ring 19411 df-cring 19412 df-oppr 19488 df-dvdsr 19506 df-unit 19507 df-invr 19537 df-dvr 19548 df-rnghom 19582 df-drng 19616 df-field 19617 df-subrg 19645 df-lmod 19748 df-lss 19816 df-lsp 19856 df-sra 20056 df-rgmod 20057 df-lidl 20058 df-rsp 20059 df-2idl 20117 df-nzr 20143 df-rlreg 20168 df-domn 20169 df-idom 20170 df-cnfld 20211 df-zring 20283 df-zrh 20317 df-zn 20320 df-assa 20662 df-asp 20663 df-ascl 20664 df-psr 20715 df-mvr 20716 df-mpl 20717 df-opsr 20719 df-evls 20879 df-evl 20880 df-psr1 20948 df-vr1 20949 df-ply1 20950 df-coe1 20951 df-evl1 21079 df-mdeg 24797 df-deg1 24798 df-mon1 24875 df-uc1p 24876 df-q1p 24877 df-r1p 24878 df-lgs 26023 |
This theorem is referenced by: 2sqreuoplt 26192 |
Copyright terms: Public domain | W3C validator |