|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rexrnmpo | Structured version Visualization version GIF version | ||
| Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | 
| ralrnmpo.2 | ⊢ (𝑧 = 𝐶 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| rexrnmpo | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rngop.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | ralrnmpo.2 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | notbid 318 | . . . 4 ⊢ (𝑧 = 𝐶 → (¬ 𝜑 ↔ ¬ 𝜓)) | 
| 4 | 1, 3 | ralrnmpo 7572 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∀𝑧 ∈ ran 𝐹 ¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜓)) | 
| 5 | 4 | notbid 318 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (¬ ∀𝑧 ∈ ran 𝐹 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜓)) | 
| 6 | dfrex2 3073 | . 2 ⊢ (∃𝑧 ∈ ran 𝐹𝜑 ↔ ¬ ∀𝑧 ∈ ran 𝐹 ¬ 𝜑) | |
| 7 | dfrex2 3073 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜓) | |
| 8 | 7 | rexbii 3094 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜓) | 
| 9 | rexnal 3100 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜓) | |
| 10 | 8, 9 | bitri 275 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜓) | 
| 11 | 5, 6, 10 | 3bitr4g 314 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 ran crn 5686 ∈ cmpo 7433 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-cnv 5693 df-dm 5695 df-rn 5696 df-oprab 7435 df-mpo 7436 | 
| This theorem is referenced by: lsmass 19687 eltx 23576 txrest 23639 txlm 23656 lsmssass 33430 ptrest 37626 | 
| Copyright terms: Public domain | W3C validator |