![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexrnmpo | Structured version Visualization version GIF version |
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
ralrnmpo.2 | ⊢ (𝑧 = 𝐶 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexrnmpo | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngop.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | ralrnmpo.2 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝜑 ↔ 𝜓)) | |
3 | 2 | notbid 318 | . . . 4 ⊢ (𝑧 = 𝐶 → (¬ 𝜑 ↔ ¬ 𝜓)) |
4 | 1, 3 | ralrnmpo 7572 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∀𝑧 ∈ ran 𝐹 ¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜓)) |
5 | 4 | notbid 318 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (¬ ∀𝑧 ∈ ran 𝐹 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜓)) |
6 | dfrex2 3071 | . 2 ⊢ (∃𝑧 ∈ ran 𝐹𝜑 ↔ ¬ ∀𝑧 ∈ ran 𝐹 ¬ 𝜑) | |
7 | dfrex2 3071 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜓) | |
8 | 7 | rexbii 3092 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜓) |
9 | rexnal 3098 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜓) | |
10 | 8, 9 | bitri 275 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜓) |
11 | 5, 6, 10 | 3bitr4g 314 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ran crn 5690 ∈ cmpo 7433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-cnv 5697 df-dm 5699 df-rn 5700 df-oprab 7435 df-mpo 7436 |
This theorem is referenced by: lsmass 19702 eltx 23592 txrest 23655 txlm 23672 lsmssass 33410 ptrest 37606 |
Copyright terms: Public domain | W3C validator |