| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexrnmpo | Structured version Visualization version GIF version | ||
| Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| ralrnmpo.2 | ⊢ (𝑧 = 𝐶 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexrnmpo | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngop.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | ralrnmpo.2 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | notbid 318 | . . . 4 ⊢ (𝑧 = 𝐶 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 4 | 1, 3 | ralrnmpo 7546 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∀𝑧 ∈ ran 𝐹 ¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜓)) |
| 5 | 4 | notbid 318 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (¬ ∀𝑧 ∈ ran 𝐹 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜓)) |
| 6 | dfrex2 3063 | . 2 ⊢ (∃𝑧 ∈ ran 𝐹𝜑 ↔ ¬ ∀𝑧 ∈ ran 𝐹 ¬ 𝜑) | |
| 7 | dfrex2 3063 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜓) | |
| 8 | 7 | rexbii 3083 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜓) |
| 9 | rexnal 3089 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜓) | |
| 10 | 8, 9 | bitri 275 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜓) |
| 11 | 5, 6, 10 | 3bitr4g 314 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ran crn 5655 ∈ cmpo 7407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-cnv 5662 df-dm 5664 df-rn 5665 df-oprab 7409 df-mpo 7410 |
| This theorem is referenced by: lsmass 19650 eltx 23506 txrest 23569 txlm 23586 lsmssass 33417 ptrest 37643 |
| Copyright terms: Public domain | W3C validator |