MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrnmpo Structured version   Visualization version   GIF version

Theorem rexrnmpo 7481
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
ralrnmpo.2 (𝑧 = 𝐶 → (𝜑𝜓))
Assertion
Ref Expression
rexrnmpo (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜓))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑧,𝐹   𝜓,𝑧   𝑥,𝑦,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem rexrnmpo
StepHypRef Expression
1 rngop.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
2 ralrnmpo.2 . . . . 5 (𝑧 = 𝐶 → (𝜑𝜓))
32notbid 318 . . . 4 (𝑧 = 𝐶 → (¬ 𝜑 ↔ ¬ 𝜓))
41, 3ralrnmpo 7480 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∀𝑧 ∈ ran 𝐹 ¬ 𝜑 ↔ ∀𝑥𝐴𝑦𝐵 ¬ 𝜓))
54notbid 318 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (¬ ∀𝑧 ∈ ran 𝐹 ¬ 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜓))
6 dfrex2 3059 . 2 (∃𝑧 ∈ ran 𝐹𝜑 ↔ ¬ ∀𝑧 ∈ ran 𝐹 ¬ 𝜑)
7 dfrex2 3059 . . . 4 (∃𝑦𝐵 𝜓 ↔ ¬ ∀𝑦𝐵 ¬ 𝜓)
87rexbii 3079 . . 3 (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴 ¬ ∀𝑦𝐵 ¬ 𝜓)
9 rexnal 3084 . . 3 (∃𝑥𝐴 ¬ ∀𝑦𝐵 ¬ 𝜓 ↔ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜓)
108, 9bitri 275 . 2 (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜓)
115, 6, 103bitr4g 314 1 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ran crn 5612  cmpo 7343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-cnv 5619  df-dm 5621  df-rn 5622  df-oprab 7345  df-mpo 7346
This theorem is referenced by:  lsmass  19576  eltx  23478  txrest  23541  txlm  23558  lsmssass  33359  ptrest  37659
  Copyright terms: Public domain W3C validator