![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltx | Structured version Visualization version GIF version |
Description: A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
eltx | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . 4 ⊢ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) | |
2 | 1 | txval 23389 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)))) |
3 | 2 | eleq2d 2818 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ 𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))))) |
4 | 1 | txbasex 23391 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) ∈ V) |
5 | eltg2b 22783 | . . . 4 ⊢ (ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) ∈ V → (𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝 ∈ 𝑆 ∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆))) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝 ∈ 𝑆 ∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆))) |
7 | vex 3477 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | vex 3477 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | xpex 7744 | . . . . . 6 ⊢ (𝑥 × 𝑦) ∈ V |
10 | 9 | rgen2w 3065 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐾 (𝑥 × 𝑦) ∈ V |
11 | eqid 2731 | . . . . . 6 ⊢ (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) | |
12 | eleq2 2821 | . . . . . . 7 ⊢ (𝑧 = (𝑥 × 𝑦) → (𝑝 ∈ 𝑧 ↔ 𝑝 ∈ (𝑥 × 𝑦))) | |
13 | sseq1 4007 | . . . . . . 7 ⊢ (𝑧 = (𝑥 × 𝑦) → (𝑧 ⊆ 𝑆 ↔ (𝑥 × 𝑦) ⊆ 𝑆)) | |
14 | 12, 13 | anbi12d 630 | . . . . . 6 ⊢ (𝑧 = (𝑥 × 𝑦) → ((𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
15 | 11, 14 | rexrnmpo 7551 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐾 (𝑥 × 𝑦) ∈ V → (∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
16 | 10, 15 | ax-mp 5 | . . . 4 ⊢ (∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)) |
17 | 16 | ralbii 3092 | . . 3 ⊢ (∀𝑝 ∈ 𝑆 ∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)) |
18 | 6, 17 | bitrdi 287 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
19 | 3, 18 | bitrd 279 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∃wrex 3069 Vcvv 3473 ⊆ wss 3948 × cxp 5674 ran crn 5677 ‘cfv 6543 (class class class)co 7412 ∈ cmpo 7414 topGenctg 17390 ×t ctx 23385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-topgen 17396 df-tx 23387 |
This theorem is referenced by: txcls 23429 txcnpi 23433 txdis 23457 txindis 23459 txdis1cn 23460 txlly 23461 txnlly 23462 txtube 23465 txcmplem1 23466 hausdiag 23470 tx1stc 23475 qustgplem 23946 txomap 33280 cvmlift2lem10 34769 |
Copyright terms: Public domain | W3C validator |