MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltx Structured version   Visualization version   GIF version

Theorem eltx 23597
Description: A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
eltx ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
Distinct variable groups:   𝑥,𝑝,𝑦,𝐽   𝐾,𝑝,𝑥,𝑦   𝑆,𝑝,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑝)   𝑊(𝑥,𝑦,𝑝)

Proof of Theorem eltx
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) = ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))
21txval 23593 . . 3 ((𝐽𝑉𝐾𝑊) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))))
32eleq2d 2830 . 2 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ 𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)))))
41txbasex 23595 . . . 4 ((𝐽𝑉𝐾𝑊) → ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) ∈ V)
5 eltg2b 22987 . . . 4 (ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) ∈ V → (𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝𝑆𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆)))
64, 5syl 17 . . 3 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝𝑆𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆)))
7 vex 3492 . . . . . . 7 𝑥 ∈ V
8 vex 3492 . . . . . . 7 𝑦 ∈ V
97, 8xpex 7788 . . . . . 6 (𝑥 × 𝑦) ∈ V
109rgen2w 3072 . . . . 5 𝑥𝐽𝑦𝐾 (𝑥 × 𝑦) ∈ V
11 eqid 2740 . . . . . 6 (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) = (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))
12 eleq2 2833 . . . . . . 7 (𝑧 = (𝑥 × 𝑦) → (𝑝𝑧𝑝 ∈ (𝑥 × 𝑦)))
13 sseq1 4034 . . . . . . 7 (𝑧 = (𝑥 × 𝑦) → (𝑧𝑆 ↔ (𝑥 × 𝑦) ⊆ 𝑆))
1412, 13anbi12d 631 . . . . . 6 (𝑧 = (𝑥 × 𝑦) → ((𝑝𝑧𝑧𝑆) ↔ (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
1511, 14rexrnmpo 7590 . . . . 5 (∀𝑥𝐽𝑦𝐾 (𝑥 × 𝑦) ∈ V → (∃𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆) ↔ ∃𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
1610, 15ax-mp 5 . . . 4 (∃𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆) ↔ ∃𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))
1716ralbii 3099 . . 3 (∀𝑝𝑆𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))
186, 17bitrdi 287 . 2 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
193, 18bitrd 279 1 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976   × cxp 5698  ran crn 5701  cfv 6573  (class class class)co 7448  cmpo 7450  topGenctg 17497   ×t ctx 23589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-topgen 17503  df-tx 23591
This theorem is referenced by:  txcls  23633  txcnpi  23637  txdis  23661  txindis  23663  txdis1cn  23664  txlly  23665  txnlly  23666  txtube  23669  txcmplem1  23670  hausdiag  23674  tx1stc  23679  qustgplem  24150  txomap  33780  cvmlift2lem10  35280
  Copyright terms: Public domain W3C validator