![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltx | Structured version Visualization version GIF version |
Description: A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
eltx | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) | |
2 | 1 | txval 23593 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)))) |
3 | 2 | eleq2d 2830 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ 𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))))) |
4 | 1 | txbasex 23595 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) ∈ V) |
5 | eltg2b 22987 | . . . 4 ⊢ (ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) ∈ V → (𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝 ∈ 𝑆 ∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆))) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝 ∈ 𝑆 ∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆))) |
7 | vex 3492 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | vex 3492 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | xpex 7788 | . . . . . 6 ⊢ (𝑥 × 𝑦) ∈ V |
10 | 9 | rgen2w 3072 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐾 (𝑥 × 𝑦) ∈ V |
11 | eqid 2740 | . . . . . 6 ⊢ (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) | |
12 | eleq2 2833 | . . . . . . 7 ⊢ (𝑧 = (𝑥 × 𝑦) → (𝑝 ∈ 𝑧 ↔ 𝑝 ∈ (𝑥 × 𝑦))) | |
13 | sseq1 4034 | . . . . . . 7 ⊢ (𝑧 = (𝑥 × 𝑦) → (𝑧 ⊆ 𝑆 ↔ (𝑥 × 𝑦) ⊆ 𝑆)) | |
14 | 12, 13 | anbi12d 631 | . . . . . 6 ⊢ (𝑧 = (𝑥 × 𝑦) → ((𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
15 | 11, 14 | rexrnmpo 7590 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐾 (𝑥 × 𝑦) ∈ V → (∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
16 | 10, 15 | ax-mp 5 | . . . 4 ⊢ (∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)) |
17 | 16 | ralbii 3099 | . . 3 ⊢ (∀𝑝 ∈ 𝑆 ∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)) |
18 | 6, 17 | bitrdi 287 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
19 | 3, 18 | bitrd 279 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 × cxp 5698 ran crn 5701 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 topGenctg 17497 ×t ctx 23589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-topgen 17503 df-tx 23591 |
This theorem is referenced by: txcls 23633 txcnpi 23637 txdis 23661 txindis 23663 txdis1cn 23664 txlly 23665 txnlly 23666 txtube 23669 txcmplem1 23670 hausdiag 23674 tx1stc 23679 qustgplem 24150 txomap 33780 cvmlift2lem10 35280 |
Copyright terms: Public domain | W3C validator |