MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltx Structured version   Visualization version   GIF version

Theorem eltx 23481
Description: A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
eltx ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
Distinct variable groups:   𝑥,𝑝,𝑦,𝐽   𝐾,𝑝,𝑥,𝑦   𝑆,𝑝,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑝)   𝑊(𝑥,𝑦,𝑝)

Proof of Theorem eltx
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) = ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))
21txval 23477 . . 3 ((𝐽𝑉𝐾𝑊) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))))
32eleq2d 2817 . 2 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ 𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)))))
41txbasex 23479 . . . 4 ((𝐽𝑉𝐾𝑊) → ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) ∈ V)
5 eltg2b 22872 . . . 4 (ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) ∈ V → (𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝𝑆𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆)))
64, 5syl 17 . . 3 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝𝑆𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆)))
7 vex 3440 . . . . . . 7 𝑥 ∈ V
8 vex 3440 . . . . . . 7 𝑦 ∈ V
97, 8xpex 7686 . . . . . 6 (𝑥 × 𝑦) ∈ V
109rgen2w 3052 . . . . 5 𝑥𝐽𝑦𝐾 (𝑥 × 𝑦) ∈ V
11 eqid 2731 . . . . . 6 (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) = (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))
12 eleq2 2820 . . . . . . 7 (𝑧 = (𝑥 × 𝑦) → (𝑝𝑧𝑝 ∈ (𝑥 × 𝑦)))
13 sseq1 3960 . . . . . . 7 (𝑧 = (𝑥 × 𝑦) → (𝑧𝑆 ↔ (𝑥 × 𝑦) ⊆ 𝑆))
1412, 13anbi12d 632 . . . . . 6 (𝑧 = (𝑥 × 𝑦) → ((𝑝𝑧𝑧𝑆) ↔ (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
1511, 14rexrnmpo 7486 . . . . 5 (∀𝑥𝐽𝑦𝐾 (𝑥 × 𝑦) ∈ V → (∃𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆) ↔ ∃𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
1610, 15ax-mp 5 . . . 4 (∃𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆) ↔ ∃𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))
1716ralbii 3078 . . 3 (∀𝑝𝑆𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))
186, 17bitrdi 287 . 2 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
193, 18bitrd 279 1 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3902   × cxp 5614  ran crn 5617  cfv 6481  (class class class)co 7346  cmpo 7348  topGenctg 17338   ×t ctx 23473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-topgen 17344  df-tx 23475
This theorem is referenced by:  txcls  23517  txcnpi  23521  txdis  23545  txindis  23547  txdis1cn  23548  txlly  23549  txnlly  23550  txtube  23553  txcmplem1  23554  hausdiag  23558  tx1stc  23563  qustgplem  24034  txomap  33842  cvmlift2lem10  35344
  Copyright terms: Public domain W3C validator