MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltx Structured version   Visualization version   GIF version

Theorem eltx 23493
Description: A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
eltx ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
Distinct variable groups:   𝑥,𝑝,𝑦,𝐽   𝐾,𝑝,𝑥,𝑦   𝑆,𝑝,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑝)   𝑊(𝑥,𝑦,𝑝)

Proof of Theorem eltx
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . 4 ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) = ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))
21txval 23489 . . 3 ((𝐽𝑉𝐾𝑊) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))))
32eleq2d 2819 . 2 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ 𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)))))
41txbasex 23491 . . . 4 ((𝐽𝑉𝐾𝑊) → ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) ∈ V)
5 eltg2b 22884 . . . 4 (ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) ∈ V → (𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝𝑆𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆)))
64, 5syl 17 . . 3 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝𝑆𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆)))
7 vex 3461 . . . . . . 7 𝑥 ∈ V
8 vex 3461 . . . . . . 7 𝑦 ∈ V
97, 8xpex 7742 . . . . . 6 (𝑥 × 𝑦) ∈ V
109rgen2w 3055 . . . . 5 𝑥𝐽𝑦𝐾 (𝑥 × 𝑦) ∈ V
11 eqid 2734 . . . . . 6 (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) = (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))
12 eleq2 2822 . . . . . . 7 (𝑧 = (𝑥 × 𝑦) → (𝑝𝑧𝑝 ∈ (𝑥 × 𝑦)))
13 sseq1 3982 . . . . . . 7 (𝑧 = (𝑥 × 𝑦) → (𝑧𝑆 ↔ (𝑥 × 𝑦) ⊆ 𝑆))
1412, 13anbi12d 632 . . . . . 6 (𝑧 = (𝑥 × 𝑦) → ((𝑝𝑧𝑧𝑆) ↔ (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
1511, 14rexrnmpo 7542 . . . . 5 (∀𝑥𝐽𝑦𝐾 (𝑥 × 𝑦) ∈ V → (∃𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆) ↔ ∃𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
1610, 15ax-mp 5 . . . 4 (∃𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆) ↔ ∃𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))
1716ralbii 3081 . . 3 (∀𝑝𝑆𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))
186, 17bitrdi 287 . 2 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
193, 18bitrd 279 1 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059  Vcvv 3457  wss 3924   × cxp 5650  ran crn 5653  cfv 6528  (class class class)co 7400  cmpo 7402  topGenctg 17438   ×t ctx 23485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-topgen 17444  df-tx 23487
This theorem is referenced by:  txcls  23529  txcnpi  23533  txdis  23557  txindis  23559  txdis1cn  23560  txlly  23561  txnlly  23562  txtube  23565  txcmplem1  23566  hausdiag  23570  tx1stc  23575  qustgplem  24046  txomap  33794  cvmlift2lem10  35263
  Copyright terms: Public domain W3C validator