| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltx | Structured version Visualization version GIF version | ||
| Description: A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| Ref | Expression |
|---|---|
| eltx | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) | |
| 2 | 1 | txval 23477 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)))) |
| 3 | 2 | eleq2d 2817 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ 𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))))) |
| 4 | 1 | txbasex 23479 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) ∈ V) |
| 5 | eltg2b 22872 | . . . 4 ⊢ (ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) ∈ V → (𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝 ∈ 𝑆 ∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆))) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝 ∈ 𝑆 ∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆))) |
| 7 | vex 3440 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 8 | vex 3440 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | xpex 7686 | . . . . . 6 ⊢ (𝑥 × 𝑦) ∈ V |
| 10 | 9 | rgen2w 3052 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐾 (𝑥 × 𝑦) ∈ V |
| 11 | eqid 2731 | . . . . . 6 ⊢ (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) | |
| 12 | eleq2 2820 | . . . . . . 7 ⊢ (𝑧 = (𝑥 × 𝑦) → (𝑝 ∈ 𝑧 ↔ 𝑝 ∈ (𝑥 × 𝑦))) | |
| 13 | sseq1 3960 | . . . . . . 7 ⊢ (𝑧 = (𝑥 × 𝑦) → (𝑧 ⊆ 𝑆 ↔ (𝑥 × 𝑦) ⊆ 𝑆)) | |
| 14 | 12, 13 | anbi12d 632 | . . . . . 6 ⊢ (𝑧 = (𝑥 × 𝑦) → ((𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
| 15 | 11, 14 | rexrnmpo 7486 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐾 (𝑥 × 𝑦) ∈ V → (∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
| 16 | 10, 15 | ax-mp 5 | . . . 4 ⊢ (∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)) |
| 17 | 16 | ralbii 3078 | . . 3 ⊢ (∀𝑝 ∈ 𝑆 ∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)) |
| 18 | 6, 17 | bitrdi 287 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
| 19 | 3, 18 | bitrd 279 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ⊆ wss 3902 × cxp 5614 ran crn 5617 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 topGenctg 17338 ×t ctx 23473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-topgen 17344 df-tx 23475 |
| This theorem is referenced by: txcls 23517 txcnpi 23521 txdis 23545 txindis 23547 txdis1cn 23548 txlly 23549 txnlly 23550 txtube 23553 txcmplem1 23554 hausdiag 23558 tx1stc 23563 qustgplem 24034 txomap 33842 cvmlift2lem10 35344 |
| Copyright terms: Public domain | W3C validator |