MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltx Structured version   Visualization version   GIF version

Theorem eltx 22719
Description: A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
eltx ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
Distinct variable groups:   𝑥,𝑝,𝑦,𝐽   𝐾,𝑝,𝑥,𝑦   𝑆,𝑝,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑝)   𝑊(𝑥,𝑦,𝑝)

Proof of Theorem eltx
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) = ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))
21txval 22715 . . 3 ((𝐽𝑉𝐾𝑊) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))))
32eleq2d 2824 . 2 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ 𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)))))
41txbasex 22717 . . . 4 ((𝐽𝑉𝐾𝑊) → ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) ∈ V)
5 eltg2b 22109 . . . 4 (ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) ∈ V → (𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝𝑆𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆)))
64, 5syl 17 . . 3 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝𝑆𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆)))
7 vex 3436 . . . . . . 7 𝑥 ∈ V
8 vex 3436 . . . . . . 7 𝑦 ∈ V
97, 8xpex 7603 . . . . . 6 (𝑥 × 𝑦) ∈ V
109rgen2w 3077 . . . . 5 𝑥𝐽𝑦𝐾 (𝑥 × 𝑦) ∈ V
11 eqid 2738 . . . . . 6 (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) = (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))
12 eleq2 2827 . . . . . . 7 (𝑧 = (𝑥 × 𝑦) → (𝑝𝑧𝑝 ∈ (𝑥 × 𝑦)))
13 sseq1 3946 . . . . . . 7 (𝑧 = (𝑥 × 𝑦) → (𝑧𝑆 ↔ (𝑥 × 𝑦) ⊆ 𝑆))
1412, 13anbi12d 631 . . . . . 6 (𝑧 = (𝑥 × 𝑦) → ((𝑝𝑧𝑧𝑆) ↔ (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
1511, 14rexrnmpo 7413 . . . . 5 (∀𝑥𝐽𝑦𝐾 (𝑥 × 𝑦) ∈ V → (∃𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆) ↔ ∃𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
1610, 15ax-mp 5 . . . 4 (∃𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆) ↔ ∃𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))
1716ralbii 3092 . . 3 (∀𝑝𝑆𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))
186, 17bitrdi 287 . 2 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
193, 18bitrd 278 1 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887   × cxp 5587  ran crn 5590  cfv 6433  (class class class)co 7275  cmpo 7277  topGenctg 17148   ×t ctx 22711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-topgen 17154  df-tx 22713
This theorem is referenced by:  txcls  22755  txcnpi  22759  txdis  22783  txindis  22785  txdis1cn  22786  txlly  22787  txnlly  22788  txtube  22791  txcmplem1  22792  hausdiag  22796  tx1stc  22801  qustgplem  23272  txomap  31784  cvmlift2lem10  33274
  Copyright terms: Public domain W3C validator