Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eltx | Structured version Visualization version GIF version |
Description: A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
eltx | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) | |
2 | 1 | txval 22715 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)))) |
3 | 2 | eleq2d 2824 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ 𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))))) |
4 | 1 | txbasex 22717 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) ∈ V) |
5 | eltg2b 22109 | . . . 4 ⊢ (ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) ∈ V → (𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝 ∈ 𝑆 ∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆))) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝 ∈ 𝑆 ∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆))) |
7 | vex 3436 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | vex 3436 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | xpex 7603 | . . . . . 6 ⊢ (𝑥 × 𝑦) ∈ V |
10 | 9 | rgen2w 3077 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐾 (𝑥 × 𝑦) ∈ V |
11 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) | |
12 | eleq2 2827 | . . . . . . 7 ⊢ (𝑧 = (𝑥 × 𝑦) → (𝑝 ∈ 𝑧 ↔ 𝑝 ∈ (𝑥 × 𝑦))) | |
13 | sseq1 3946 | . . . . . . 7 ⊢ (𝑧 = (𝑥 × 𝑦) → (𝑧 ⊆ 𝑆 ↔ (𝑥 × 𝑦) ⊆ 𝑆)) | |
14 | 12, 13 | anbi12d 631 | . . . . . 6 ⊢ (𝑧 = (𝑥 × 𝑦) → ((𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
15 | 11, 14 | rexrnmpo 7413 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐾 (𝑥 × 𝑦) ∈ V → (∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
16 | 10, 15 | ax-mp 5 | . . . 4 ⊢ (∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)) |
17 | 16 | ralbii 3092 | . . 3 ⊢ (∀𝑝 ∈ 𝑆 ∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)) |
18 | 6, 17 | bitrdi 287 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
19 | 3, 18 | bitrd 278 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ⊆ wss 3887 × cxp 5587 ran crn 5590 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 topGenctg 17148 ×t ctx 22711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-topgen 17154 df-tx 22713 |
This theorem is referenced by: txcls 22755 txcnpi 22759 txdis 22783 txindis 22785 txdis1cn 22786 txlly 22787 txnlly 22788 txtube 22791 txcmplem1 22792 hausdiag 22796 tx1stc 22801 qustgplem 23272 txomap 31784 cvmlift2lem10 33274 |
Copyright terms: Public domain | W3C validator |