Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmpfiiin Structured version   Visualization version   GIF version

Theorem cmpfiiin 42713
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
cmpfiiin.x 𝑋 = 𝐽
cmpfiiin.j (𝜑𝐽 ∈ Comp)
cmpfiiin.s ((𝜑𝑘𝐼) → 𝑆 ∈ (Clsd‘𝐽))
cmpfiiin.z ((𝜑 ∧ (𝑙𝐼𝑙 ∈ Fin)) → (𝑋 𝑘𝑙 𝑆) ≠ ∅)
Assertion
Ref Expression
cmpfiiin (𝜑 → (𝑋 𝑘𝐼 𝑆) ≠ ∅)
Distinct variable groups:   𝜑,𝑘,𝑙   𝑘,𝐼,𝑙   𝑘,𝐽,𝑙   𝑆,𝑙   𝑘,𝑋,𝑙
Allowed substitution hint:   𝑆(𝑘)

Proof of Theorem cmpfiiin
StepHypRef Expression
1 cmpfiiin.j . . . . 5 (𝜑𝐽 ∈ Comp)
2 cmptop 23404 . . . . 5 (𝐽 ∈ Comp → 𝐽 ∈ Top)
31, 2syl 17 . . . 4 (𝜑𝐽 ∈ Top)
4 cmpfiiin.x . . . . 5 𝑋 = 𝐽
54topcld 23044 . . . 4 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
63, 5syl 17 . . 3 (𝜑𝑋 ∈ (Clsd‘𝐽))
7 cmpfiiin.s . . . . 5 ((𝜑𝑘𝐼) → 𝑆 ∈ (Clsd‘𝐽))
84cldss 23038 . . . . 5 (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)
97, 8syl 17 . . . 4 ((𝜑𝑘𝐼) → 𝑆𝑋)
109ralrimiva 3145 . . 3 (𝜑 → ∀𝑘𝐼 𝑆𝑋)
11 riinint 5981 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
126, 10, 11syl2anc 584 . 2 (𝜑 → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
136snssd 4808 . . . 4 (𝜑 → {𝑋} ⊆ (Clsd‘𝐽))
147fmpttd 7134 . . . . 5 (𝜑 → (𝑘𝐼𝑆):𝐼⟶(Clsd‘𝐽))
1514frnd 6743 . . . 4 (𝜑 → ran (𝑘𝐼𝑆) ⊆ (Clsd‘𝐽))
1613, 15unssd 4191 . . 3 (𝜑 → ({𝑋} ∪ ran (𝑘𝐼𝑆)) ⊆ (Clsd‘𝐽))
17 elin 3966 . . . . . . 7 (𝑙 ∈ (𝒫 𝐼 ∩ Fin) ↔ (𝑙 ∈ 𝒫 𝐼𝑙 ∈ Fin))
18 elpwi 4606 . . . . . . . 8 (𝑙 ∈ 𝒫 𝐼𝑙𝐼)
1918anim1i 615 . . . . . . 7 ((𝑙 ∈ 𝒫 𝐼𝑙 ∈ Fin) → (𝑙𝐼𝑙 ∈ Fin))
2017, 19sylbi 217 . . . . . 6 (𝑙 ∈ (𝒫 𝐼 ∩ Fin) → (𝑙𝐼𝑙 ∈ Fin))
21 cmpfiiin.z . . . . . . 7 ((𝜑 ∧ (𝑙𝐼𝑙 ∈ Fin)) → (𝑋 𝑘𝑙 𝑆) ≠ ∅)
22 nesym 2996 . . . . . . 7 ((𝑋 𝑘𝑙 𝑆) ≠ ∅ ↔ ¬ ∅ = (𝑋 𝑘𝑙 𝑆))
2321, 22sylib 218 . . . . . 6 ((𝜑 ∧ (𝑙𝐼𝑙 ∈ Fin)) → ¬ ∅ = (𝑋 𝑘𝑙 𝑆))
2420, 23sylan2 593 . . . . 5 ((𝜑𝑙 ∈ (𝒫 𝐼 ∩ Fin)) → ¬ ∅ = (𝑋 𝑘𝑙 𝑆))
2524nrexdv 3148 . . . 4 (𝜑 → ¬ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 𝑘𝑙 𝑆))
26 elrfirn2 42712 . . . . 5 ((𝑋 ∈ (Clsd‘𝐽) ∧ ∀𝑘𝐼 𝑆𝑋) → (∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆))) ↔ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 𝑘𝑙 𝑆)))
276, 10, 26syl2anc 584 . . . 4 (𝜑 → (∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆))) ↔ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 𝑘𝑙 𝑆)))
2825, 27mtbird 325 . . 3 (𝜑 → ¬ ∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆))))
29 cmpfii 23418 . . 3 ((𝐽 ∈ Comp ∧ ({𝑋} ∪ ran (𝑘𝐼𝑆)) ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆)))) → ({𝑋} ∪ ran (𝑘𝐼𝑆)) ≠ ∅)
301, 16, 28, 29syl3anc 1372 . 2 (𝜑 ({𝑋} ∪ ran (𝑘𝐼𝑆)) ≠ ∅)
3112, 30eqnetrd 3007 1 (𝜑 → (𝑋 𝑘𝐼 𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  wral 3060  wrex 3069  cun 3948  cin 3949  wss 3950  c0 4332  𝒫 cpw 4599  {csn 4625   cuni 4906   cint 4945   ciin 4991  cmpt 5224  ran crn 5685  cfv 6560  Fincfn 8986  ficfi 9451  Topctop 22900  Clsdccld 23025  Compccmp 23395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-om 7889  df-1o 8507  df-en 8987  df-dom 8988  df-fin 8990  df-fi 9452  df-top 22901  df-cld 23028  df-cmp 23396
This theorem is referenced by:  kelac1  43080
  Copyright terms: Public domain W3C validator