Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmpfiiin Structured version   Visualization version   GIF version

Theorem cmpfiiin 40435
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
cmpfiiin.x 𝑋 = 𝐽
cmpfiiin.j (𝜑𝐽 ∈ Comp)
cmpfiiin.s ((𝜑𝑘𝐼) → 𝑆 ∈ (Clsd‘𝐽))
cmpfiiin.z ((𝜑 ∧ (𝑙𝐼𝑙 ∈ Fin)) → (𝑋 𝑘𝑙 𝑆) ≠ ∅)
Assertion
Ref Expression
cmpfiiin (𝜑 → (𝑋 𝑘𝐼 𝑆) ≠ ∅)
Distinct variable groups:   𝜑,𝑘,𝑙   𝑘,𝐼,𝑙   𝑘,𝐽,𝑙   𝑆,𝑙   𝑘,𝑋,𝑙
Allowed substitution hint:   𝑆(𝑘)

Proof of Theorem cmpfiiin
StepHypRef Expression
1 cmpfiiin.j . . . . 5 (𝜑𝐽 ∈ Comp)
2 cmptop 22454 . . . . 5 (𝐽 ∈ Comp → 𝐽 ∈ Top)
31, 2syl 17 . . . 4 (𝜑𝐽 ∈ Top)
4 cmpfiiin.x . . . . 5 𝑋 = 𝐽
54topcld 22094 . . . 4 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
63, 5syl 17 . . 3 (𝜑𝑋 ∈ (Clsd‘𝐽))
7 cmpfiiin.s . . . . 5 ((𝜑𝑘𝐼) → 𝑆 ∈ (Clsd‘𝐽))
84cldss 22088 . . . . 5 (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)
97, 8syl 17 . . . 4 ((𝜑𝑘𝐼) → 𝑆𝑋)
109ralrimiva 3107 . . 3 (𝜑 → ∀𝑘𝐼 𝑆𝑋)
11 riinint 5866 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
126, 10, 11syl2anc 583 . 2 (𝜑 → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
136snssd 4739 . . . 4 (𝜑 → {𝑋} ⊆ (Clsd‘𝐽))
147fmpttd 6971 . . . . 5 (𝜑 → (𝑘𝐼𝑆):𝐼⟶(Clsd‘𝐽))
1514frnd 6592 . . . 4 (𝜑 → ran (𝑘𝐼𝑆) ⊆ (Clsd‘𝐽))
1613, 15unssd 4116 . . 3 (𝜑 → ({𝑋} ∪ ran (𝑘𝐼𝑆)) ⊆ (Clsd‘𝐽))
17 elin 3899 . . . . . . 7 (𝑙 ∈ (𝒫 𝐼 ∩ Fin) ↔ (𝑙 ∈ 𝒫 𝐼𝑙 ∈ Fin))
18 elpwi 4539 . . . . . . . 8 (𝑙 ∈ 𝒫 𝐼𝑙𝐼)
1918anim1i 614 . . . . . . 7 ((𝑙 ∈ 𝒫 𝐼𝑙 ∈ Fin) → (𝑙𝐼𝑙 ∈ Fin))
2017, 19sylbi 216 . . . . . 6 (𝑙 ∈ (𝒫 𝐼 ∩ Fin) → (𝑙𝐼𝑙 ∈ Fin))
21 cmpfiiin.z . . . . . . 7 ((𝜑 ∧ (𝑙𝐼𝑙 ∈ Fin)) → (𝑋 𝑘𝑙 𝑆) ≠ ∅)
22 nesym 2999 . . . . . . 7 ((𝑋 𝑘𝑙 𝑆) ≠ ∅ ↔ ¬ ∅ = (𝑋 𝑘𝑙 𝑆))
2321, 22sylib 217 . . . . . 6 ((𝜑 ∧ (𝑙𝐼𝑙 ∈ Fin)) → ¬ ∅ = (𝑋 𝑘𝑙 𝑆))
2420, 23sylan2 592 . . . . 5 ((𝜑𝑙 ∈ (𝒫 𝐼 ∩ Fin)) → ¬ ∅ = (𝑋 𝑘𝑙 𝑆))
2524nrexdv 3197 . . . 4 (𝜑 → ¬ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 𝑘𝑙 𝑆))
26 elrfirn2 40434 . . . . 5 ((𝑋 ∈ (Clsd‘𝐽) ∧ ∀𝑘𝐼 𝑆𝑋) → (∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆))) ↔ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 𝑘𝑙 𝑆)))
276, 10, 26syl2anc 583 . . . 4 (𝜑 → (∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆))) ↔ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 𝑘𝑙 𝑆)))
2825, 27mtbird 324 . . 3 (𝜑 → ¬ ∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆))))
29 cmpfii 22468 . . 3 ((𝐽 ∈ Comp ∧ ({𝑋} ∪ ran (𝑘𝐼𝑆)) ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆)))) → ({𝑋} ∪ ran (𝑘𝐼𝑆)) ≠ ∅)
301, 16, 28, 29syl3anc 1369 . 2 (𝜑 ({𝑋} ∪ ran (𝑘𝐼𝑆)) ≠ ∅)
3112, 30eqnetrd 3010 1 (𝜑 → (𝑋 𝑘𝐼 𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cun 3881  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   cuni 4836   cint 4876   ciin 4922  cmpt 5153  ran crn 5581  cfv 6418  Fincfn 8691  ficfi 9099  Topctop 21950  Clsdccld 22075  Compccmp 22445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-en 8692  df-fin 8695  df-fi 9100  df-top 21951  df-cld 22078  df-cmp 22446
This theorem is referenced by:  kelac1  40804
  Copyright terms: Public domain W3C validator