Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmpfiiin Structured version   Visualization version   GIF version

Theorem cmpfiiin 38689
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
cmpfiiin.x 𝑋 = 𝐽
cmpfiiin.j (𝜑𝐽 ∈ Comp)
cmpfiiin.s ((𝜑𝑘𝐼) → 𝑆 ∈ (Clsd‘𝐽))
cmpfiiin.z ((𝜑 ∧ (𝑙𝐼𝑙 ∈ Fin)) → (𝑋 𝑘𝑙 𝑆) ≠ ∅)
Assertion
Ref Expression
cmpfiiin (𝜑 → (𝑋 𝑘𝐼 𝑆) ≠ ∅)
Distinct variable groups:   𝜑,𝑘,𝑙   𝑘,𝐼,𝑙   𝑘,𝐽,𝑙   𝑆,𝑙   𝑘,𝑋,𝑙
Allowed substitution hint:   𝑆(𝑘)

Proof of Theorem cmpfiiin
StepHypRef Expression
1 cmpfiiin.j . . . . 5 (𝜑𝐽 ∈ Comp)
2 cmptop 21710 . . . . 5 (𝐽 ∈ Comp → 𝐽 ∈ Top)
31, 2syl 17 . . . 4 (𝜑𝐽 ∈ Top)
4 cmpfiiin.x . . . . 5 𝑋 = 𝐽
54topcld 21350 . . . 4 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
63, 5syl 17 . . 3 (𝜑𝑋 ∈ (Clsd‘𝐽))
7 cmpfiiin.s . . . . 5 ((𝜑𝑘𝐼) → 𝑆 ∈ (Clsd‘𝐽))
84cldss 21344 . . . . 5 (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)
97, 8syl 17 . . . 4 ((𝜑𝑘𝐼) → 𝑆𝑋)
109ralrimiva 3132 . . 3 (𝜑 → ∀𝑘𝐼 𝑆𝑋)
11 riinint 5682 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
126, 10, 11syl2anc 576 . 2 (𝜑 → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
136snssd 4617 . . . 4 (𝜑 → {𝑋} ⊆ (Clsd‘𝐽))
147fmpttd 6704 . . . . 5 (𝜑 → (𝑘𝐼𝑆):𝐼⟶(Clsd‘𝐽))
1514frnd 6353 . . . 4 (𝜑 → ran (𝑘𝐼𝑆) ⊆ (Clsd‘𝐽))
1613, 15unssd 4052 . . 3 (𝜑 → ({𝑋} ∪ ran (𝑘𝐼𝑆)) ⊆ (Clsd‘𝐽))
17 elin 4059 . . . . . . 7 (𝑙 ∈ (𝒫 𝐼 ∩ Fin) ↔ (𝑙 ∈ 𝒫 𝐼𝑙 ∈ Fin))
18 elpwi 4433 . . . . . . . 8 (𝑙 ∈ 𝒫 𝐼𝑙𝐼)
1918anim1i 605 . . . . . . 7 ((𝑙 ∈ 𝒫 𝐼𝑙 ∈ Fin) → (𝑙𝐼𝑙 ∈ Fin))
2017, 19sylbi 209 . . . . . 6 (𝑙 ∈ (𝒫 𝐼 ∩ Fin) → (𝑙𝐼𝑙 ∈ Fin))
21 cmpfiiin.z . . . . . . 7 ((𝜑 ∧ (𝑙𝐼𝑙 ∈ Fin)) → (𝑋 𝑘𝑙 𝑆) ≠ ∅)
22 nesym 3023 . . . . . . 7 ((𝑋 𝑘𝑙 𝑆) ≠ ∅ ↔ ¬ ∅ = (𝑋 𝑘𝑙 𝑆))
2321, 22sylib 210 . . . . . 6 ((𝜑 ∧ (𝑙𝐼𝑙 ∈ Fin)) → ¬ ∅ = (𝑋 𝑘𝑙 𝑆))
2420, 23sylan2 583 . . . . 5 ((𝜑𝑙 ∈ (𝒫 𝐼 ∩ Fin)) → ¬ ∅ = (𝑋 𝑘𝑙 𝑆))
2524nrexdv 3215 . . . 4 (𝜑 → ¬ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 𝑘𝑙 𝑆))
26 elrfirn2 38688 . . . . 5 ((𝑋 ∈ (Clsd‘𝐽) ∧ ∀𝑘𝐼 𝑆𝑋) → (∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆))) ↔ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 𝑘𝑙 𝑆)))
276, 10, 26syl2anc 576 . . . 4 (𝜑 → (∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆))) ↔ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 𝑘𝑙 𝑆)))
2825, 27mtbird 317 . . 3 (𝜑 → ¬ ∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆))))
29 cmpfii 21724 . . 3 ((𝐽 ∈ Comp ∧ ({𝑋} ∪ ran (𝑘𝐼𝑆)) ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆)))) → ({𝑋} ∪ ran (𝑘𝐼𝑆)) ≠ ∅)
301, 16, 28, 29syl3anc 1351 . 2 (𝜑 ({𝑋} ∪ ran (𝑘𝐼𝑆)) ≠ ∅)
3112, 30eqnetrd 3034 1 (𝜑 → (𝑋 𝑘𝐼 𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wne 2967  wral 3088  wrex 3089  cun 3829  cin 3830  wss 3831  c0 4180  𝒫 cpw 4423  {csn 4442   cuni 4713   cint 4750   ciin 4794  cmpt 5009  ran crn 5409  cfv 6190  Fincfn 8308  ficfi 8671  Topctop 21208  Clsdccld 21331  Compccmp 21701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-iin 4796  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-2o 7908  df-oadd 7911  df-er 8091  df-map 8210  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-fi 8672  df-top 21209  df-cld 21334  df-cmp 21702
This theorem is referenced by:  kelac1  39059
  Copyright terms: Public domain W3C validator