![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cmpfiiin | Structured version Visualization version GIF version |
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
cmpfiiin.x | ⊢ 𝑋 = ∪ 𝐽 |
cmpfiiin.j | ⊢ (𝜑 → 𝐽 ∈ Comp) |
cmpfiiin.s | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑆 ∈ (Clsd‘𝐽)) |
cmpfiiin.z | ⊢ ((𝜑 ∧ (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) → (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆) ≠ ∅) |
Ref | Expression |
---|---|
cmpfiiin | ⊢ (𝜑 → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmpfiiin.j | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
2 | cmptop 23419 | . . . . 5 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) |
4 | cmpfiiin.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | topcld 23059 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Clsd‘𝐽)) |
7 | cmpfiiin.s | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑆 ∈ (Clsd‘𝐽)) | |
8 | 4 | cldss 23053 | . . . . 5 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) |
9 | 7, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑆 ⊆ 𝑋) |
10 | 9 | ralrimiva 3144 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) |
11 | riinint 5985 | . . 3 ⊢ ((𝑋 ∈ (Clsd‘𝐽) ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) | |
12 | 6, 10, 11 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
13 | 6 | snssd 4814 | . . . 4 ⊢ (𝜑 → {𝑋} ⊆ (Clsd‘𝐽)) |
14 | 7 | fmpttd 7135 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐼 ↦ 𝑆):𝐼⟶(Clsd‘𝐽)) |
15 | 14 | frnd 6745 | . . . 4 ⊢ (𝜑 → ran (𝑘 ∈ 𝐼 ↦ 𝑆) ⊆ (Clsd‘𝐽)) |
16 | 13, 15 | unssd 4202 | . . 3 ⊢ (𝜑 → ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) ⊆ (Clsd‘𝐽)) |
17 | elin 3979 | . . . . . . 7 ⊢ (𝑙 ∈ (𝒫 𝐼 ∩ Fin) ↔ (𝑙 ∈ 𝒫 𝐼 ∧ 𝑙 ∈ Fin)) | |
18 | elpwi 4612 | . . . . . . . 8 ⊢ (𝑙 ∈ 𝒫 𝐼 → 𝑙 ⊆ 𝐼) | |
19 | 18 | anim1i 615 | . . . . . . 7 ⊢ ((𝑙 ∈ 𝒫 𝐼 ∧ 𝑙 ∈ Fin) → (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) |
20 | 17, 19 | sylbi 217 | . . . . . 6 ⊢ (𝑙 ∈ (𝒫 𝐼 ∩ Fin) → (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) |
21 | cmpfiiin.z | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) → (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆) ≠ ∅) | |
22 | nesym 2995 | . . . . . . 7 ⊢ ((𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆) ≠ ∅ ↔ ¬ ∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆)) | |
23 | 21, 22 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) → ¬ ∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆)) |
24 | 20, 23 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑙 ∈ (𝒫 𝐼 ∩ Fin)) → ¬ ∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆)) |
25 | 24 | nrexdv 3147 | . . . 4 ⊢ (𝜑 → ¬ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆)) |
26 | elrfirn2 42684 | . . . . 5 ⊢ ((𝑋 ∈ (Clsd‘𝐽) ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (∅ ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) ↔ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆))) | |
27 | 6, 10, 26 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (∅ ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) ↔ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆))) |
28 | 25, 27 | mtbird 325 | . . 3 ⊢ (𝜑 → ¬ ∅ ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)))) |
29 | cmpfii 23433 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)))) → ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) ≠ ∅) | |
30 | 1, 16, 28, 29 | syl3anc 1370 | . 2 ⊢ (𝜑 → ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) ≠ ∅) |
31 | 12, 30 | eqnetrd 3006 | 1 ⊢ (𝜑 → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ∪ cun 3961 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 {csn 4631 ∪ cuni 4912 ∩ cint 4951 ∩ ciin 4997 ↦ cmpt 5231 ran crn 5690 ‘cfv 6563 Fincfn 8984 ficfi 9448 Topctop 22915 Clsdccld 23040 Compccmp 23410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-om 7888 df-1o 8505 df-en 8985 df-dom 8986 df-fin 8988 df-fi 9449 df-top 22916 df-cld 23043 df-cmp 23411 |
This theorem is referenced by: kelac1 43052 |
Copyright terms: Public domain | W3C validator |