| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cmpfiiin | Structured version Visualization version GIF version | ||
| Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| cmpfiiin.x | ⊢ 𝑋 = ∪ 𝐽 |
| cmpfiiin.j | ⊢ (𝜑 → 𝐽 ∈ Comp) |
| cmpfiiin.s | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑆 ∈ (Clsd‘𝐽)) |
| cmpfiiin.z | ⊢ ((𝜑 ∧ (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) → (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆) ≠ ∅) |
| Ref | Expression |
|---|---|
| cmpfiiin | ⊢ (𝜑 → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmpfiiin.j | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
| 2 | cmptop 23350 | . . . . 5 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 4 | cmpfiiin.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 5 | 4 | topcld 22990 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Clsd‘𝐽)) |
| 7 | cmpfiiin.s | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑆 ∈ (Clsd‘𝐽)) | |
| 8 | 4 | cldss 22984 | . . . . 5 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑆 ⊆ 𝑋) |
| 10 | 9 | ralrimiva 3133 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) |
| 11 | riinint 5962 | . . 3 ⊢ ((𝑋 ∈ (Clsd‘𝐽) ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) | |
| 12 | 6, 10, 11 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
| 13 | 6 | snssd 4789 | . . . 4 ⊢ (𝜑 → {𝑋} ⊆ (Clsd‘𝐽)) |
| 14 | 7 | fmpttd 7115 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐼 ↦ 𝑆):𝐼⟶(Clsd‘𝐽)) |
| 15 | 14 | frnd 6724 | . . . 4 ⊢ (𝜑 → ran (𝑘 ∈ 𝐼 ↦ 𝑆) ⊆ (Clsd‘𝐽)) |
| 16 | 13, 15 | unssd 4172 | . . 3 ⊢ (𝜑 → ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) ⊆ (Clsd‘𝐽)) |
| 17 | elin 3947 | . . . . . . 7 ⊢ (𝑙 ∈ (𝒫 𝐼 ∩ Fin) ↔ (𝑙 ∈ 𝒫 𝐼 ∧ 𝑙 ∈ Fin)) | |
| 18 | elpwi 4587 | . . . . . . . 8 ⊢ (𝑙 ∈ 𝒫 𝐼 → 𝑙 ⊆ 𝐼) | |
| 19 | 18 | anim1i 615 | . . . . . . 7 ⊢ ((𝑙 ∈ 𝒫 𝐼 ∧ 𝑙 ∈ Fin) → (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) |
| 20 | 17, 19 | sylbi 217 | . . . . . 6 ⊢ (𝑙 ∈ (𝒫 𝐼 ∩ Fin) → (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) |
| 21 | cmpfiiin.z | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) → (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆) ≠ ∅) | |
| 22 | nesym 2987 | . . . . . . 7 ⊢ ((𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆) ≠ ∅ ↔ ¬ ∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆)) | |
| 23 | 21, 22 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) → ¬ ∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆)) |
| 24 | 20, 23 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑙 ∈ (𝒫 𝐼 ∩ Fin)) → ¬ ∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆)) |
| 25 | 24 | nrexdv 3136 | . . . 4 ⊢ (𝜑 → ¬ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆)) |
| 26 | elrfirn2 42685 | . . . . 5 ⊢ ((𝑋 ∈ (Clsd‘𝐽) ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (∅ ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) ↔ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆))) | |
| 27 | 6, 10, 26 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (∅ ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) ↔ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆))) |
| 28 | 25, 27 | mtbird 325 | . . 3 ⊢ (𝜑 → ¬ ∅ ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)))) |
| 29 | cmpfii 23364 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)))) → ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) ≠ ∅) | |
| 30 | 1, 16, 28, 29 | syl3anc 1372 | . 2 ⊢ (𝜑 → ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) ≠ ∅) |
| 31 | 12, 30 | eqnetrd 2998 | 1 ⊢ (𝜑 → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 ∪ cun 3929 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 {csn 4606 ∪ cuni 4887 ∩ cint 4926 ∩ ciin 4972 ↦ cmpt 5205 ran crn 5666 ‘cfv 6541 Fincfn 8967 ficfi 9432 Topctop 22848 Clsdccld 22971 Compccmp 23341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-om 7870 df-1o 8488 df-en 8968 df-dom 8969 df-fin 8971 df-fi 9433 df-top 22849 df-cld 22974 df-cmp 23342 |
| This theorem is referenced by: kelac1 43053 |
| Copyright terms: Public domain | W3C validator |