| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cmpfiiin | Structured version Visualization version GIF version | ||
| Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| cmpfiiin.x | ⊢ 𝑋 = ∪ 𝐽 |
| cmpfiiin.j | ⊢ (𝜑 → 𝐽 ∈ Comp) |
| cmpfiiin.s | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑆 ∈ (Clsd‘𝐽)) |
| cmpfiiin.z | ⊢ ((𝜑 ∧ (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) → (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆) ≠ ∅) |
| Ref | Expression |
|---|---|
| cmpfiiin | ⊢ (𝜑 → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmpfiiin.j | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
| 2 | cmptop 23289 | . . . . 5 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 4 | cmpfiiin.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 5 | 4 | topcld 22929 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Clsd‘𝐽)) |
| 7 | cmpfiiin.s | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑆 ∈ (Clsd‘𝐽)) | |
| 8 | 4 | cldss 22923 | . . . . 5 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑆 ⊆ 𝑋) |
| 10 | 9 | ralrimiva 3126 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) |
| 11 | riinint 5938 | . . 3 ⊢ ((𝑋 ∈ (Clsd‘𝐽) ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) | |
| 12 | 6, 10, 11 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
| 13 | 6 | snssd 4776 | . . . 4 ⊢ (𝜑 → {𝑋} ⊆ (Clsd‘𝐽)) |
| 14 | 7 | fmpttd 7090 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐼 ↦ 𝑆):𝐼⟶(Clsd‘𝐽)) |
| 15 | 14 | frnd 6699 | . . . 4 ⊢ (𝜑 → ran (𝑘 ∈ 𝐼 ↦ 𝑆) ⊆ (Clsd‘𝐽)) |
| 16 | 13, 15 | unssd 4158 | . . 3 ⊢ (𝜑 → ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) ⊆ (Clsd‘𝐽)) |
| 17 | elin 3933 | . . . . . . 7 ⊢ (𝑙 ∈ (𝒫 𝐼 ∩ Fin) ↔ (𝑙 ∈ 𝒫 𝐼 ∧ 𝑙 ∈ Fin)) | |
| 18 | elpwi 4573 | . . . . . . . 8 ⊢ (𝑙 ∈ 𝒫 𝐼 → 𝑙 ⊆ 𝐼) | |
| 19 | 18 | anim1i 615 | . . . . . . 7 ⊢ ((𝑙 ∈ 𝒫 𝐼 ∧ 𝑙 ∈ Fin) → (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) |
| 20 | 17, 19 | sylbi 217 | . . . . . 6 ⊢ (𝑙 ∈ (𝒫 𝐼 ∩ Fin) → (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) |
| 21 | cmpfiiin.z | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) → (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆) ≠ ∅) | |
| 22 | nesym 2982 | . . . . . . 7 ⊢ ((𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆) ≠ ∅ ↔ ¬ ∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆)) | |
| 23 | 21, 22 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) → ¬ ∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆)) |
| 24 | 20, 23 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑙 ∈ (𝒫 𝐼 ∩ Fin)) → ¬ ∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆)) |
| 25 | 24 | nrexdv 3129 | . . . 4 ⊢ (𝜑 → ¬ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆)) |
| 26 | elrfirn2 42691 | . . . . 5 ⊢ ((𝑋 ∈ (Clsd‘𝐽) ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (∅ ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) ↔ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆))) | |
| 27 | 6, 10, 26 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (∅ ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) ↔ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆))) |
| 28 | 25, 27 | mtbird 325 | . . 3 ⊢ (𝜑 → ¬ ∅ ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)))) |
| 29 | cmpfii 23303 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)))) → ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) ≠ ∅) | |
| 30 | 1, 16, 28, 29 | syl3anc 1373 | . 2 ⊢ (𝜑 → ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) ≠ ∅) |
| 31 | 12, 30 | eqnetrd 2993 | 1 ⊢ (𝜑 → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ∪ cun 3915 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 {csn 4592 ∪ cuni 4874 ∩ cint 4913 ∩ ciin 4959 ↦ cmpt 5191 ran crn 5642 ‘cfv 6514 Fincfn 8921 ficfi 9368 Topctop 22787 Clsdccld 22910 Compccmp 23280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-en 8922 df-dom 8923 df-fin 8925 df-fi 9369 df-top 22788 df-cld 22913 df-cmp 23281 |
| This theorem is referenced by: kelac1 43059 |
| Copyright terms: Public domain | W3C validator |