![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cmpfiiin | Structured version Visualization version GIF version |
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
cmpfiiin.x | ⊢ 𝑋 = ∪ 𝐽 |
cmpfiiin.j | ⊢ (𝜑 → 𝐽 ∈ Comp) |
cmpfiiin.s | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑆 ∈ (Clsd‘𝐽)) |
cmpfiiin.z | ⊢ ((𝜑 ∧ (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) → (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆) ≠ ∅) |
Ref | Expression |
---|---|
cmpfiiin | ⊢ (𝜑 → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmpfiiin.j | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
2 | cmptop 22769 | . . . . 5 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) |
4 | cmpfiiin.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | topcld 22409 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Clsd‘𝐽)) |
7 | cmpfiiin.s | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑆 ∈ (Clsd‘𝐽)) | |
8 | 4 | cldss 22403 | . . . . 5 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) |
9 | 7, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑆 ⊆ 𝑋) |
10 | 9 | ralrimiva 3140 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) |
11 | riinint 5927 | . . 3 ⊢ ((𝑋 ∈ (Clsd‘𝐽) ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) | |
12 | 6, 10, 11 | syl2anc 585 | . 2 ⊢ (𝜑 → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
13 | 6 | snssd 4773 | . . . 4 ⊢ (𝜑 → {𝑋} ⊆ (Clsd‘𝐽)) |
14 | 7 | fmpttd 7067 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐼 ↦ 𝑆):𝐼⟶(Clsd‘𝐽)) |
15 | 14 | frnd 6680 | . . . 4 ⊢ (𝜑 → ran (𝑘 ∈ 𝐼 ↦ 𝑆) ⊆ (Clsd‘𝐽)) |
16 | 13, 15 | unssd 4150 | . . 3 ⊢ (𝜑 → ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) ⊆ (Clsd‘𝐽)) |
17 | elin 3930 | . . . . . . 7 ⊢ (𝑙 ∈ (𝒫 𝐼 ∩ Fin) ↔ (𝑙 ∈ 𝒫 𝐼 ∧ 𝑙 ∈ Fin)) | |
18 | elpwi 4571 | . . . . . . . 8 ⊢ (𝑙 ∈ 𝒫 𝐼 → 𝑙 ⊆ 𝐼) | |
19 | 18 | anim1i 616 | . . . . . . 7 ⊢ ((𝑙 ∈ 𝒫 𝐼 ∧ 𝑙 ∈ Fin) → (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) |
20 | 17, 19 | sylbi 216 | . . . . . 6 ⊢ (𝑙 ∈ (𝒫 𝐼 ∩ Fin) → (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) |
21 | cmpfiiin.z | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) → (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆) ≠ ∅) | |
22 | nesym 2997 | . . . . . . 7 ⊢ ((𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆) ≠ ∅ ↔ ¬ ∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆)) | |
23 | 21, 22 | sylib 217 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) → ¬ ∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆)) |
24 | 20, 23 | sylan2 594 | . . . . 5 ⊢ ((𝜑 ∧ 𝑙 ∈ (𝒫 𝐼 ∩ Fin)) → ¬ ∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆)) |
25 | 24 | nrexdv 3143 | . . . 4 ⊢ (𝜑 → ¬ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆)) |
26 | elrfirn2 41066 | . . . . 5 ⊢ ((𝑋 ∈ (Clsd‘𝐽) ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (∅ ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) ↔ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆))) | |
27 | 6, 10, 26 | syl2anc 585 | . . . 4 ⊢ (𝜑 → (∅ ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) ↔ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆))) |
28 | 25, 27 | mtbird 325 | . . 3 ⊢ (𝜑 → ¬ ∅ ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)))) |
29 | cmpfii 22783 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)))) → ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) ≠ ∅) | |
30 | 1, 16, 28, 29 | syl3anc 1372 | . 2 ⊢ (𝜑 → ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) ≠ ∅) |
31 | 12, 30 | eqnetrd 3008 | 1 ⊢ (𝜑 → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∪ cun 3912 ∩ cin 3913 ⊆ wss 3914 ∅c0 4286 𝒫 cpw 4564 {csn 4590 ∪ cuni 4869 ∩ cint 4911 ∩ ciin 4959 ↦ cmpt 5192 ran crn 5638 ‘cfv 6500 Fincfn 8889 ficfi 9354 Topctop 22265 Clsdccld 22390 Compccmp 22760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-iin 4961 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-om 7807 df-1o 8416 df-en 8890 df-fin 8893 df-fi 9355 df-top 22266 df-cld 22393 df-cmp 22761 |
This theorem is referenced by: kelac1 41437 |
Copyright terms: Public domain | W3C validator |