Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmpfiiin Structured version   Visualization version   GIF version

Theorem cmpfiiin 41067
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
cmpfiiin.x 𝑋 = 𝐽
cmpfiiin.j (𝜑𝐽 ∈ Comp)
cmpfiiin.s ((𝜑𝑘𝐼) → 𝑆 ∈ (Clsd‘𝐽))
cmpfiiin.z ((𝜑 ∧ (𝑙𝐼𝑙 ∈ Fin)) → (𝑋 𝑘𝑙 𝑆) ≠ ∅)
Assertion
Ref Expression
cmpfiiin (𝜑 → (𝑋 𝑘𝐼 𝑆) ≠ ∅)
Distinct variable groups:   𝜑,𝑘,𝑙   𝑘,𝐼,𝑙   𝑘,𝐽,𝑙   𝑆,𝑙   𝑘,𝑋,𝑙
Allowed substitution hint:   𝑆(𝑘)

Proof of Theorem cmpfiiin
StepHypRef Expression
1 cmpfiiin.j . . . . 5 (𝜑𝐽 ∈ Comp)
2 cmptop 22769 . . . . 5 (𝐽 ∈ Comp → 𝐽 ∈ Top)
31, 2syl 17 . . . 4 (𝜑𝐽 ∈ Top)
4 cmpfiiin.x . . . . 5 𝑋 = 𝐽
54topcld 22409 . . . 4 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
63, 5syl 17 . . 3 (𝜑𝑋 ∈ (Clsd‘𝐽))
7 cmpfiiin.s . . . . 5 ((𝜑𝑘𝐼) → 𝑆 ∈ (Clsd‘𝐽))
84cldss 22403 . . . . 5 (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)
97, 8syl 17 . . . 4 ((𝜑𝑘𝐼) → 𝑆𝑋)
109ralrimiva 3140 . . 3 (𝜑 → ∀𝑘𝐼 𝑆𝑋)
11 riinint 5927 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
126, 10, 11syl2anc 585 . 2 (𝜑 → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
136snssd 4773 . . . 4 (𝜑 → {𝑋} ⊆ (Clsd‘𝐽))
147fmpttd 7067 . . . . 5 (𝜑 → (𝑘𝐼𝑆):𝐼⟶(Clsd‘𝐽))
1514frnd 6680 . . . 4 (𝜑 → ran (𝑘𝐼𝑆) ⊆ (Clsd‘𝐽))
1613, 15unssd 4150 . . 3 (𝜑 → ({𝑋} ∪ ran (𝑘𝐼𝑆)) ⊆ (Clsd‘𝐽))
17 elin 3930 . . . . . . 7 (𝑙 ∈ (𝒫 𝐼 ∩ Fin) ↔ (𝑙 ∈ 𝒫 𝐼𝑙 ∈ Fin))
18 elpwi 4571 . . . . . . . 8 (𝑙 ∈ 𝒫 𝐼𝑙𝐼)
1918anim1i 616 . . . . . . 7 ((𝑙 ∈ 𝒫 𝐼𝑙 ∈ Fin) → (𝑙𝐼𝑙 ∈ Fin))
2017, 19sylbi 216 . . . . . 6 (𝑙 ∈ (𝒫 𝐼 ∩ Fin) → (𝑙𝐼𝑙 ∈ Fin))
21 cmpfiiin.z . . . . . . 7 ((𝜑 ∧ (𝑙𝐼𝑙 ∈ Fin)) → (𝑋 𝑘𝑙 𝑆) ≠ ∅)
22 nesym 2997 . . . . . . 7 ((𝑋 𝑘𝑙 𝑆) ≠ ∅ ↔ ¬ ∅ = (𝑋 𝑘𝑙 𝑆))
2321, 22sylib 217 . . . . . 6 ((𝜑 ∧ (𝑙𝐼𝑙 ∈ Fin)) → ¬ ∅ = (𝑋 𝑘𝑙 𝑆))
2420, 23sylan2 594 . . . . 5 ((𝜑𝑙 ∈ (𝒫 𝐼 ∩ Fin)) → ¬ ∅ = (𝑋 𝑘𝑙 𝑆))
2524nrexdv 3143 . . . 4 (𝜑 → ¬ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 𝑘𝑙 𝑆))
26 elrfirn2 41066 . . . . 5 ((𝑋 ∈ (Clsd‘𝐽) ∧ ∀𝑘𝐼 𝑆𝑋) → (∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆))) ↔ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 𝑘𝑙 𝑆)))
276, 10, 26syl2anc 585 . . . 4 (𝜑 → (∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆))) ↔ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 𝑘𝑙 𝑆)))
2825, 27mtbird 325 . . 3 (𝜑 → ¬ ∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆))))
29 cmpfii 22783 . . 3 ((𝐽 ∈ Comp ∧ ({𝑋} ∪ ran (𝑘𝐼𝑆)) ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆)))) → ({𝑋} ∪ ran (𝑘𝐼𝑆)) ≠ ∅)
301, 16, 28, 29syl3anc 1372 . 2 (𝜑 ({𝑋} ∪ ran (𝑘𝐼𝑆)) ≠ ∅)
3112, 30eqnetrd 3008 1 (𝜑 → (𝑋 𝑘𝐼 𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2940  wral 3061  wrex 3070  cun 3912  cin 3913  wss 3914  c0 4286  𝒫 cpw 4564  {csn 4590   cuni 4869   cint 4911   ciin 4959  cmpt 5192  ran crn 5638  cfv 6500  Fincfn 8889  ficfi 9354  Topctop 22265  Clsdccld 22390  Compccmp 22760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-iin 4961  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-om 7807  df-1o 8416  df-en 8890  df-fin 8893  df-fi 9355  df-top 22266  df-cld 22393  df-cmp 22761
This theorem is referenced by:  kelac1  41437
  Copyright terms: Public domain W3C validator