MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimf Structured version   Visualization version   GIF version

Theorem rlimf 15138
Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimf (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)

Proof of Theorem rlimf
StepHypRef Expression
1 rlimpm 15137 . 2 (𝐹𝑟 𝐴𝐹 ∈ (ℂ ↑pm ℝ))
2 cnex 10883 . . . 4 ℂ ∈ V
3 reex 10893 . . . 4 ℝ ∈ V
42, 3elpm2 8620 . . 3 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
54simplbi 497 . 2 (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ)
61, 5syl 17 1 (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3883   class class class wbr 5070  dom cdm 5580  wf 6414  (class class class)co 7255  pm cpm 8574  cc 10800  cr 10801  𝑟 crli 15122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-pm 8576  df-rlim 15126
This theorem is referenced by:  rlimcl  15140  rlimi  15150  rlimclim1  15182  rlimres  15195  rlimmptrcl  15245  rlimo1  15254  o1rlimmul  15256  dvfsumrlim2  25101  rlimcxp  26028
  Copyright terms: Public domain W3C validator