Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rlimf | Structured version Visualization version GIF version |
Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) |
Ref | Expression |
---|---|
rlimf | ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹:dom 𝐹⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimpm 15085 | . 2 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ (ℂ ↑pm ℝ)) | |
2 | cnex 10834 | . . . 4 ⊢ ℂ ∈ V | |
3 | reex 10844 | . . . 4 ⊢ ℝ ∈ V | |
4 | 2, 3 | elpm2 8575 | . . 3 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
5 | 4 | simplbi 501 | . 2 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ) |
6 | 1, 5 | syl 17 | 1 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹:dom 𝐹⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3880 class class class wbr 5067 dom cdm 5565 ⟶wf 6393 (class class class)co 7231 ↑pm cpm 8529 ℂcc 10751 ℝcr 10752 ⇝𝑟 crli 15070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3422 df-sbc 3709 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-op 4562 df-uni 4834 df-br 5068 df-opab 5130 df-id 5469 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-fv 6405 df-ov 7234 df-oprab 7235 df-mpo 7236 df-pm 8531 df-rlim 15074 |
This theorem is referenced by: rlimcl 15088 rlimi 15098 rlimclim1 15130 rlimres 15143 rlimmptrcl 15193 rlimo1 15202 o1rlimmul 15204 dvfsumrlim2 24953 rlimcxp 25880 |
Copyright terms: Public domain | W3C validator |