| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimf | Structured version Visualization version GIF version | ||
| Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| Ref | Expression |
|---|---|
| rlimf | ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹:dom 𝐹⟶ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimpm 15411 | . 2 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ (ℂ ↑pm ℝ)) | |
| 2 | cnex 11096 | . . . 4 ⊢ ℂ ∈ V | |
| 3 | reex 11106 | . . . 4 ⊢ ℝ ∈ V | |
| 4 | 2, 3 | elpm2 8806 | . . 3 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
| 5 | 4 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ) |
| 6 | 1, 5 | syl 17 | 1 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹:dom 𝐹⟶ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ⊆ wss 3898 class class class wbr 5095 dom cdm 5621 ⟶wf 6484 (class class class)co 7354 ↑pm cpm 8759 ℂcc 11013 ℝcr 11014 ⇝𝑟 crli 15396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-pm 8761 df-rlim 15400 |
| This theorem is referenced by: rlimcl 15414 rlimi 15424 rlimclim1 15456 rlimres 15469 rlimmptrcl 15519 rlimo1 15528 o1rlimmul 15530 dvfsumrlim2 25969 rlimcxp 26914 |
| Copyright terms: Public domain | W3C validator |