MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimf Structured version   Visualization version   GIF version

Theorem rlimf 15538
Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimf (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)

Proof of Theorem rlimf
StepHypRef Expression
1 rlimpm 15537 . 2 (𝐹𝑟 𝐴𝐹 ∈ (ℂ ↑pm ℝ))
2 cnex 11237 . . . 4 ℂ ∈ V
3 reex 11247 . . . 4 ℝ ∈ V
42, 3elpm2 8915 . . 3 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
54simplbi 497 . 2 (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ)
61, 5syl 17 1 (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wss 3950   class class class wbr 5142  dom cdm 5684  wf 6556  (class class class)co 7432  pm cpm 8868  cc 11154  cr 11155  𝑟 crli 15522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-pm 8870  df-rlim 15526
This theorem is referenced by:  rlimcl  15540  rlimi  15550  rlimclim1  15582  rlimres  15595  rlimmptrcl  15645  rlimo1  15654  o1rlimmul  15656  dvfsumrlim2  26074  rlimcxp  27018
  Copyright terms: Public domain W3C validator