MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimf Structured version   Visualization version   GIF version

Theorem rlimf 15408
Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimf (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)

Proof of Theorem rlimf
StepHypRef Expression
1 rlimpm 15407 . 2 (𝐹𝑟 𝐴𝐹 ∈ (ℂ ↑pm ℝ))
2 cnex 11087 . . . 4 ℂ ∈ V
3 reex 11097 . . . 4 ℝ ∈ V
42, 3elpm2 8798 . . 3 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
54simplbi 497 . 2 (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ)
61, 5syl 17 1 (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wss 3902   class class class wbr 5091  dom cdm 5616  wf 6477  (class class class)co 7346  pm cpm 8751  cc 11004  cr 11005  𝑟 crli 15392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-pm 8753  df-rlim 15396
This theorem is referenced by:  rlimcl  15410  rlimi  15420  rlimclim1  15452  rlimres  15465  rlimmptrcl  15515  rlimo1  15524  o1rlimmul  15526  dvfsumrlim2  25967  rlimcxp  26912
  Copyright terms: Public domain W3C validator