| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimss | Structured version Visualization version GIF version | ||
| Description: Domain closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| Ref | Expression |
|---|---|
| rlimss | ⊢ (𝐹 ⇝𝑟 𝐴 → dom 𝐹 ⊆ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimpm 15516 | . 2 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ (ℂ ↑pm ℝ)) | |
| 2 | cnex 11210 | . . . 4 ⊢ ℂ ∈ V | |
| 3 | reex 11220 | . . . 4 ⊢ ℝ ∈ V | |
| 4 | 2, 3 | elpm2 8888 | . . 3 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
| 5 | 4 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ) |
| 6 | 1, 5 | syl 17 | 1 ⊢ (𝐹 ⇝𝑟 𝐴 → dom 𝐹 ⊆ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3926 class class class wbr 5119 dom cdm 5654 ⟶wf 6527 (class class class)co 7405 ↑pm cpm 8841 ℂcc 11127 ℝcr 11128 ⇝𝑟 crli 15501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-pm 8843 df-rlim 15505 |
| This theorem is referenced by: rlimcl 15519 rlimi 15529 rlimi2 15530 rlimuni 15566 rlimres 15574 rlimeq 15585 rlimcld2 15594 rlimcn1 15604 rlimcn3 15606 rlimo1 15633 o1rlimmul 15635 rlimneg 15663 rlimsqzlem 15665 rlimno1 15670 rlimcxp 26936 |
| Copyright terms: Public domain | W3C validator |