MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimss Structured version   Visualization version   GIF version

Theorem rlimss 15518
Description: Domain closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimss (𝐹𝑟 𝐴 → dom 𝐹 ⊆ ℝ)

Proof of Theorem rlimss
StepHypRef Expression
1 rlimpm 15516 . 2 (𝐹𝑟 𝐴𝐹 ∈ (ℂ ↑pm ℝ))
2 cnex 11210 . . . 4 ℂ ∈ V
3 reex 11220 . . . 4 ℝ ∈ V
42, 3elpm2 8888 . . 3 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
54simprbi 496 . 2 (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ)
61, 5syl 17 1 (𝐹𝑟 𝐴 → dom 𝐹 ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3926   class class class wbr 5119  dom cdm 5654  wf 6527  (class class class)co 7405  pm cpm 8841  cc 11127  cr 11128  𝑟 crli 15501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-pm 8843  df-rlim 15505
This theorem is referenced by:  rlimcl  15519  rlimi  15529  rlimi2  15530  rlimuni  15566  rlimres  15574  rlimeq  15585  rlimcld2  15594  rlimcn1  15604  rlimcn3  15606  rlimo1  15633  o1rlimmul  15635  rlimneg  15663  rlimsqzlem  15665  rlimno1  15670  rlimcxp  26936
  Copyright terms: Public domain W3C validator