MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimss Structured version   Visualization version   GIF version

Theorem rlimss 15497
Description: Domain closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimss (𝐹𝑟 𝐴 → dom 𝐹 ⊆ ℝ)

Proof of Theorem rlimss
StepHypRef Expression
1 rlimpm 15495 . 2 (𝐹𝑟 𝐴𝐹 ∈ (ℂ ↑pm ℝ))
2 cnex 11228 . . . 4 ℂ ∈ V
3 reex 11238 . . . 4 ℝ ∈ V
42, 3elpm2 8893 . . 3 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
54simprbi 495 . 2 (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ)
61, 5syl 17 1 (𝐹𝑟 𝐴 → dom 𝐹 ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  wss 3947   class class class wbr 5144  dom cdm 5673  wf 6540  (class class class)co 7414  pm cpm 8846  cc 11145  cr 11146  𝑟 crli 15480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-cnex 11203  ax-resscn 11204
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3421  df-v 3465  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-br 5145  df-opab 5207  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7417  df-oprab 7418  df-mpo 7419  df-pm 8848  df-rlim 15484
This theorem is referenced by:  rlimcl  15498  rlimi  15508  rlimi2  15509  rlimuni  15545  rlimres  15553  rlimeq  15564  rlimcld2  15573  rlimcn1  15583  rlimcn3  15585  rlimo1  15612  o1rlimmul  15614  rlimneg  15644  rlimsqzlem  15646  rlimno1  15651  rlimcxp  26997
  Copyright terms: Public domain W3C validator