| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimss | Structured version Visualization version GIF version | ||
| Description: Domain closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| Ref | Expression |
|---|---|
| rlimss | ⊢ (𝐹 ⇝𝑟 𝐴 → dom 𝐹 ⊆ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimpm 15407 | . 2 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ (ℂ ↑pm ℝ)) | |
| 2 | cnex 11087 | . . . 4 ⊢ ℂ ∈ V | |
| 3 | reex 11097 | . . . 4 ⊢ ℝ ∈ V | |
| 4 | 2, 3 | elpm2 8798 | . . 3 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
| 5 | 4 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ) |
| 6 | 1, 5 | syl 17 | 1 ⊢ (𝐹 ⇝𝑟 𝐴 → dom 𝐹 ⊆ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3902 class class class wbr 5091 dom cdm 5616 ⟶wf 6477 (class class class)co 7346 ↑pm cpm 8751 ℂcc 11004 ℝcr 11005 ⇝𝑟 crli 15392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-pm 8753 df-rlim 15396 |
| This theorem is referenced by: rlimcl 15410 rlimi 15420 rlimi2 15421 rlimuni 15457 rlimres 15465 rlimeq 15476 rlimcld2 15485 rlimcn1 15495 rlimcn3 15497 rlimo1 15524 o1rlimmul 15526 rlimneg 15554 rlimsqzlem 15556 rlimno1 15561 rlimcxp 26912 |
| Copyright terms: Public domain | W3C validator |