Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rlimss | Structured version Visualization version GIF version |
Description: Domain closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) |
Ref | Expression |
---|---|
rlimss | ⊢ (𝐹 ⇝𝑟 𝐴 → dom 𝐹 ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimpm 15209 | . 2 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ (ℂ ↑pm ℝ)) | |
2 | cnex 10952 | . . . 4 ⊢ ℂ ∈ V | |
3 | reex 10962 | . . . 4 ⊢ ℝ ∈ V | |
4 | 2, 3 | elpm2 8662 | . . 3 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
5 | 4 | simprbi 497 | . 2 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ) |
6 | 1, 5 | syl 17 | 1 ⊢ (𝐹 ⇝𝑟 𝐴 → dom 𝐹 ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3887 class class class wbr 5074 dom cdm 5589 ⟶wf 6429 (class class class)co 7275 ↑pm cpm 8616 ℂcc 10869 ℝcr 10870 ⇝𝑟 crli 15194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-pm 8618 df-rlim 15198 |
This theorem is referenced by: rlimcl 15212 rlimi 15222 rlimi2 15223 rlimuni 15259 rlimres 15267 rlimeq 15278 rlimcld2 15287 rlimcn1 15297 rlimcn3 15299 rlimo1 15326 o1rlimmul 15328 rlimneg 15358 rlimsqzlem 15360 rlimno1 15365 rlimcxp 26123 |
Copyright terms: Public domain | W3C validator |