| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climcl | Structured version Visualization version GIF version | ||
| Description: Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| climcl | ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climrel 15434 | . . . . 5 ⊢ Rel ⇝ | |
| 2 | 1 | brrelex1i 5687 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐹 ∈ V) |
| 3 | eqidd 2730 | . . . 4 ⊢ ((𝐹 ⇝ 𝐴 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
| 4 | 2, 3 | clim 15436 | . . 3 ⊢ (𝐹 ⇝ 𝐴 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝐹 ⇝ 𝐴 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3444 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 < clt 11184 − cmin 11381 ℤcz 12505 ℤ≥cuz 12769 ℝ+crp 12927 abscabs 15176 ⇝ cli 15426 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-neg 11384 df-z 12506 df-uz 12770 df-clim 15430 |
| This theorem is referenced by: rlimclim 15488 climrlim2 15489 climuni 15494 fclim 15495 climeu 15497 climreu 15498 2clim 15514 climcn1lem 15545 climadd 15574 climmul 15575 climsub 15576 climaddc2 15578 climcau 15613 clim2div 15831 ntrivcvgtail 15842 ntrivcvgmullem 15843 mbflim 25545 ulmcau 26280 emcllem6 26887 dchrmusum2 27381 dchrvmasumiflem1 27388 dchrvmasumiflem2 27389 dchrisum0lem1b 27402 dchrmusumlem 27409 iprodefisum 35701 climrec 45574 climexp 45576 climsuse 45579 climneg 45581 climdivf 45583 climleltrp 45647 climuzlem 45714 climxlim2lem 45816 climxlim2 45817 sge0isum 46398 |
| Copyright terms: Public domain | W3C validator |