![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climcl | Structured version Visualization version GIF version |
Description: Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
climcl | ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climrel 15462 | . . . . 5 ⊢ Rel ⇝ | |
2 | 1 | brrelex1i 5728 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐹 ∈ V) |
3 | eqidd 2729 | . . . 4 ⊢ ((𝐹 ⇝ 𝐴 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
4 | 2, 3 | clim 15464 | . . 3 ⊢ (𝐹 ⇝ 𝐴 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
5 | 4 | ibi 267 | . 2 ⊢ (𝐹 ⇝ 𝐴 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
6 | 5 | simpld 494 | 1 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∀wral 3057 ∃wrex 3066 Vcvv 3470 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 ℂcc 11130 < clt 11272 − cmin 11468 ℤcz 12582 ℤ≥cuz 12846 ℝ+crp 13000 abscabs 15207 ⇝ cli 15454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-cnex 11188 ax-resscn 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-neg 11471 df-z 12583 df-uz 12847 df-clim 15458 |
This theorem is referenced by: rlimclim 15516 climrlim2 15517 climuni 15522 fclim 15523 climeu 15525 climreu 15526 2clim 15542 climcn1lem 15573 climadd 15602 climmul 15603 climsub 15604 climaddc2 15606 climcau 15643 clim2div 15861 ntrivcvgtail 15872 ntrivcvgmullem 15873 mbflim 25590 ulmcau 26324 emcllem6 26926 dchrmusum2 27420 dchrvmasumiflem1 27427 dchrvmasumiflem2 27428 dchrisum0lem1b 27441 dchrmusumlem 27448 iprodefisum 35329 climrec 44985 climexp 44987 climsuse 44990 climneg 44992 climdivf 44994 climleltrp 45058 climuzlem 45125 climxlim2lem 45227 climxlim2 45228 sge0isum 45809 |
Copyright terms: Public domain | W3C validator |