| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climcl | Structured version Visualization version GIF version | ||
| Description: Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| climcl | ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climrel 15513 | . . . . 5 ⊢ Rel ⇝ | |
| 2 | 1 | brrelex1i 5715 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐹 ∈ V) |
| 3 | eqidd 2737 | . . . 4 ⊢ ((𝐹 ⇝ 𝐴 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
| 4 | 2, 3 | clim 15515 | . . 3 ⊢ (𝐹 ⇝ 𝐴 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝐹 ⇝ 𝐴 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 Vcvv 3464 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 < clt 11274 − cmin 11471 ℤcz 12593 ℤ≥cuz 12857 ℝ+crp 13013 abscabs 15258 ⇝ cli 15505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-cnex 11190 ax-resscn 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-neg 11474 df-z 12594 df-uz 12858 df-clim 15509 |
| This theorem is referenced by: rlimclim 15567 climrlim2 15568 climuni 15573 fclim 15574 climeu 15576 climreu 15577 2clim 15593 climcn1lem 15624 climadd 15653 climmul 15654 climsub 15655 climaddc2 15657 climcau 15692 clim2div 15910 ntrivcvgtail 15921 ntrivcvgmullem 15922 mbflim 25626 ulmcau 26361 emcllem6 26968 dchrmusum2 27462 dchrvmasumiflem1 27469 dchrvmasumiflem2 27470 dchrisum0lem1b 27483 dchrmusumlem 27490 iprodefisum 35763 climrec 45599 climexp 45601 climsuse 45604 climneg 45606 climdivf 45608 climleltrp 45672 climuzlem 45739 climxlim2lem 45841 climxlim2 45842 sge0isum 46423 |
| Copyright terms: Public domain | W3C validator |