| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climcl | Structured version Visualization version GIF version | ||
| Description: Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| climcl | ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climrel 15399 | . . . . 5 ⊢ Rel ⇝ | |
| 2 | 1 | brrelex1i 5670 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐹 ∈ V) |
| 3 | eqidd 2732 | . . . 4 ⊢ ((𝐹 ⇝ 𝐴 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
| 4 | 2, 3 | clim 15401 | . . 3 ⊢ (𝐹 ⇝ 𝐴 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝐹 ⇝ 𝐴 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 < clt 11146 − cmin 11344 ℤcz 12468 ℤ≥cuz 12732 ℝ+crp 12890 abscabs 15141 ⇝ cli 15391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-neg 11347 df-z 12469 df-uz 12733 df-clim 15395 |
| This theorem is referenced by: rlimclim 15453 climrlim2 15454 climuni 15459 fclim 15460 climeu 15462 climreu 15463 2clim 15479 climcn1lem 15510 climadd 15539 climmul 15540 climsub 15541 climaddc2 15543 climcau 15578 clim2div 15796 ntrivcvgtail 15807 ntrivcvgmullem 15808 mbflim 25596 ulmcau 26331 emcllem6 26938 dchrmusum2 27432 dchrvmasumiflem1 27439 dchrvmasumiflem2 27440 dchrisum0lem1b 27453 dchrmusumlem 27460 iprodefisum 35785 climrec 45651 climexp 45653 climsuse 45656 climneg 45658 climdivf 45660 climleltrp 45722 climuzlem 45789 climxlim2lem 45891 climxlim2 45892 sge0isum 46473 |
| Copyright terms: Public domain | W3C validator |