MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcl Structured version   Visualization version   GIF version

Theorem climcl 15406
Description: Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
climcl (𝐹𝐴𝐴 ∈ ℂ)

Proof of Theorem climcl
Dummy variables 𝑥 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 15399 . . . . 5 Rel ⇝
21brrelex1i 5670 . . . 4 (𝐹𝐴𝐹 ∈ V)
3 eqidd 2732 . . . 4 ((𝐹𝐴𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
42, 3clim 15401 . . 3 (𝐹𝐴 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
54ibi 267 . 2 (𝐹𝐴 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
65simpld 494 1 (𝐹𝐴𝐴 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wral 3047  wrex 3056  Vcvv 3436   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004   < clt 11146  cmin 11344  cz 12468  cuz 12732  +crp 12890  abscabs 15141  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-cnex 11062  ax-resscn 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-neg 11347  df-z 12469  df-uz 12733  df-clim 15395
This theorem is referenced by:  rlimclim  15453  climrlim2  15454  climuni  15459  fclim  15460  climeu  15462  climreu  15463  2clim  15479  climcn1lem  15510  climadd  15539  climmul  15540  climsub  15541  climaddc2  15543  climcau  15578  clim2div  15796  ntrivcvgtail  15807  ntrivcvgmullem  15808  mbflim  25596  ulmcau  26331  emcllem6  26938  dchrmusum2  27432  dchrvmasumiflem1  27439  dchrvmasumiflem2  27440  dchrisum0lem1b  27453  dchrmusumlem  27460  iprodefisum  35785  climrec  45651  climexp  45653  climsuse  45656  climneg  45658  climdivf  45660  climleltrp  45722  climuzlem  45789  climxlim2lem  45891  climxlim2  45892  sge0isum  46473
  Copyright terms: Public domain W3C validator