MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcl Structured version   Visualization version   GIF version

Theorem climcl 15136
Description: Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
climcl (𝐹𝐴𝐴 ∈ ℂ)

Proof of Theorem climcl
Dummy variables 𝑥 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 15129 . . . . 5 Rel ⇝
21brrelex1i 5634 . . . 4 (𝐹𝐴𝐹 ∈ V)
3 eqidd 2739 . . . 4 ((𝐹𝐴𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
42, 3clim 15131 . . 3 (𝐹𝐴 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
54ibi 266 . 2 (𝐹𝐴 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
65simpld 494 1 (𝐹𝐴𝐴 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3063  wrex 3064  Vcvv 3422   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800   < clt 10940  cmin 11135  cz 12249  cuz 12511  +crp 12659  abscabs 14873  cli 15121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-neg 11138  df-z 12250  df-uz 12512  df-clim 15125
This theorem is referenced by:  rlimclim  15183  climrlim2  15184  climuni  15189  fclim  15190  climeu  15192  climreu  15193  2clim  15209  climcn1lem  15240  climadd  15269  climmul  15270  climsub  15271  climaddc2  15273  climcau  15310  clim2div  15529  ntrivcvgtail  15540  ntrivcvgmullem  15541  mbflim  24737  ulmcau  25459  emcllem6  26055  dchrmusum2  26547  dchrvmasumiflem1  26554  dchrvmasumiflem2  26555  dchrisum0lem1b  26568  dchrmusumlem  26575  iprodefisum  33613  climrec  43034  climexp  43036  climsuse  43039  climneg  43041  climdivf  43043  climleltrp  43107  climuzlem  43174  climxlim2lem  43276  climxlim2  43277  sge0isum  43855
  Copyright terms: Public domain W3C validator