| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climcl | Structured version Visualization version GIF version | ||
| Description: Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| climcl | ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climrel 15399 | . . . . 5 ⊢ Rel ⇝ | |
| 2 | 1 | brrelex1i 5675 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐹 ∈ V) |
| 3 | eqidd 2730 | . . . 4 ⊢ ((𝐹 ⇝ 𝐴 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
| 4 | 2, 3 | clim 15401 | . . 3 ⊢ (𝐹 ⇝ 𝐴 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝐹 ⇝ 𝐴 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3436 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 < clt 11149 − cmin 11347 ℤcz 12471 ℤ≥cuz 12735 ℝ+crp 12893 abscabs 15141 ⇝ cli 15391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-neg 11350 df-z 12472 df-uz 12736 df-clim 15395 |
| This theorem is referenced by: rlimclim 15453 climrlim2 15454 climuni 15459 fclim 15460 climeu 15462 climreu 15463 2clim 15479 climcn1lem 15510 climadd 15539 climmul 15540 climsub 15541 climaddc2 15543 climcau 15578 clim2div 15796 ntrivcvgtail 15807 ntrivcvgmullem 15808 mbflim 25567 ulmcau 26302 emcllem6 26909 dchrmusum2 27403 dchrvmasumiflem1 27410 dchrvmasumiflem2 27411 dchrisum0lem1b 27424 dchrmusumlem 27431 iprodefisum 35714 climrec 45584 climexp 45586 climsuse 45589 climneg 45591 climdivf 45593 climleltrp 45657 climuzlem 45724 climxlim2lem 45826 climxlim2 45827 sge0isum 46408 |
| Copyright terms: Public domain | W3C validator |