MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcl Structured version   Visualization version   GIF version

Theorem climcl 15441
Description: Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
climcl (𝐹𝐴𝐴 ∈ ℂ)

Proof of Theorem climcl
Dummy variables 𝑥 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 15434 . . . . 5 Rel ⇝
21brrelex1i 5687 . . . 4 (𝐹𝐴𝐹 ∈ V)
3 eqidd 2730 . . . 4 ((𝐹𝐴𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
42, 3clim 15436 . . 3 (𝐹𝐴 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
54ibi 267 . 2 (𝐹𝐴 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
65simpld 494 1 (𝐹𝐴𝐴 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  wrex 3053  Vcvv 3444   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042   < clt 11184  cmin 11381  cz 12505  cuz 12769  +crp 12927  abscabs 15176  cli 15426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-cnex 11100  ax-resscn 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-neg 11384  df-z 12506  df-uz 12770  df-clim 15430
This theorem is referenced by:  rlimclim  15488  climrlim2  15489  climuni  15494  fclim  15495  climeu  15497  climreu  15498  2clim  15514  climcn1lem  15545  climadd  15574  climmul  15575  climsub  15576  climaddc2  15578  climcau  15613  clim2div  15831  ntrivcvgtail  15842  ntrivcvgmullem  15843  mbflim  25545  ulmcau  26280  emcllem6  26887  dchrmusum2  27381  dchrvmasumiflem1  27388  dchrvmasumiflem2  27389  dchrisum0lem1b  27402  dchrmusumlem  27409  iprodefisum  35701  climrec  45574  climexp  45576  climsuse  45579  climneg  45581  climdivf  45583  climleltrp  45647  climuzlem  45714  climxlim2lem  45816  climxlim2  45817  sge0isum  46398
  Copyright terms: Public domain W3C validator