MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noextend Structured version   Visualization version   GIF version

Theorem noextend 27405
Description: Extending a surreal by one sign value results in a new surreal. (Contributed by Scott Fenton, 22-Nov-2021.)
Hypothesis
Ref Expression
noextend.1 𝑋 ∈ {1o, 2o}
Assertion
Ref Expression
noextend (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ No )

Proof of Theorem noextend
StepHypRef Expression
1 nofun 27388 . . 3 (𝐴 No → Fun 𝐴)
2 dmexg 7896 . . . 4 (𝐴 No → dom 𝐴 ∈ V)
3 noextend.1 . . . 4 𝑋 ∈ {1o, 2o}
4 funsng 6598 . . . 4 ((dom 𝐴 ∈ V ∧ 𝑋 ∈ {1o, 2o}) → Fun {⟨dom 𝐴, 𝑋⟩})
52, 3, 4sylancl 584 . . 3 (𝐴 No → Fun {⟨dom 𝐴, 𝑋⟩})
63elexi 3492 . . . . . 6 𝑋 ∈ V
76dmsnop 6214 . . . . 5 dom {⟨dom 𝐴, 𝑋⟩} = {dom 𝐴}
87ineq2i 4208 . . . 4 (dom 𝐴 ∩ dom {⟨dom 𝐴, 𝑋⟩}) = (dom 𝐴 ∩ {dom 𝐴})
9 nodmord 27392 . . . . . 6 (𝐴 No → Ord dom 𝐴)
10 ordirr 6381 . . . . . 6 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
119, 10syl 17 . . . . 5 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
12 disjsn 4714 . . . . 5 ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴)
1311, 12sylibr 233 . . . 4 (𝐴 No → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
148, 13eqtrid 2782 . . 3 (𝐴 No → (dom 𝐴 ∩ dom {⟨dom 𝐴, 𝑋⟩}) = ∅)
15 funun 6593 . . 3 (((Fun 𝐴 ∧ Fun {⟨dom 𝐴, 𝑋⟩}) ∧ (dom 𝐴 ∩ dom {⟨dom 𝐴, 𝑋⟩}) = ∅) → Fun (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}))
161, 5, 14, 15syl21anc 834 . 2 (𝐴 No → Fun (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}))
177uneq2i 4159 . . . 4 (dom 𝐴 ∪ dom {⟨dom 𝐴, 𝑋⟩}) = (dom 𝐴 ∪ {dom 𝐴})
18 dmun 5909 . . . 4 dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = (dom 𝐴 ∪ dom {⟨dom 𝐴, 𝑋⟩})
19 df-suc 6369 . . . 4 suc dom 𝐴 = (dom 𝐴 ∪ {dom 𝐴})
2017, 18, 193eqtr4i 2768 . . 3 dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = suc dom 𝐴
21 nodmon 27389 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
22 onsuc 7801 . . . 4 (dom 𝐴 ∈ On → suc dom 𝐴 ∈ On)
2321, 22syl 17 . . 3 (𝐴 No → suc dom 𝐴 ∈ On)
2420, 23eqeltrid 2835 . 2 (𝐴 No → dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ On)
25 rnun 6144 . . . 4 ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = (ran 𝐴 ∪ ran {⟨dom 𝐴, 𝑋⟩})
26 rnsnopg 6219 . . . . . 6 (dom 𝐴 ∈ V → ran {⟨dom 𝐴, 𝑋⟩} = {𝑋})
272, 26syl 17 . . . . 5 (𝐴 No → ran {⟨dom 𝐴, 𝑋⟩} = {𝑋})
2827uneq2d 4162 . . . 4 (𝐴 No → (ran 𝐴 ∪ ran {⟨dom 𝐴, 𝑋⟩}) = (ran 𝐴 ∪ {𝑋}))
2925, 28eqtrid 2782 . . 3 (𝐴 No → ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = (ran 𝐴 ∪ {𝑋}))
30 norn 27390 . . . 4 (𝐴 No → ran 𝐴 ⊆ {1o, 2o})
31 snssi 4810 . . . . 5 (𝑋 ∈ {1o, 2o} → {𝑋} ⊆ {1o, 2o})
323, 31mp1i 13 . . . 4 (𝐴 No → {𝑋} ⊆ {1o, 2o})
3330, 32unssd 4185 . . 3 (𝐴 No → (ran 𝐴 ∪ {𝑋}) ⊆ {1o, 2o})
3429, 33eqsstrd 4019 . 2 (𝐴 No → ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ⊆ {1o, 2o})
35 elno2 27393 . 2 ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ No ↔ (Fun (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∧ dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ On ∧ ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ⊆ {1o, 2o}))
3616, 24, 34, 35syl3anbrc 1341 1 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2104  Vcvv 3472  cun 3945  cin 3946  wss 3947  c0 4321  {csn 4627  {cpr 4629  cop 4633  dom cdm 5675  ran crn 5676  Ord word 6362  Oncon0 6363  suc csuc 6365  Fun wfun 6536  1oc1o 8461  2oc2o 8462   No csur 27379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-no 27382
This theorem is referenced by:  noextendlt  27408  noextendgt  27409  nosupno  27442  nosupbnd1  27453  nosupbnd2lem1  27454  noinfno  27457  noinfbnd1  27468  noinfbnd2lem1  27469
  Copyright terms: Public domain W3C validator