MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noextend Structured version   Visualization version   GIF version

Theorem noextend 27578
Description: Extending a surreal by one sign value results in a new surreal. (Contributed by Scott Fenton, 22-Nov-2021.)
Hypothesis
Ref Expression
noextend.1 𝑋 ∈ {1o, 2o}
Assertion
Ref Expression
noextend (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ No )

Proof of Theorem noextend
StepHypRef Expression
1 nofun 27561 . . 3 (𝐴 No → Fun 𝐴)
2 dmexg 7877 . . . 4 (𝐴 No → dom 𝐴 ∈ V)
3 noextend.1 . . . 4 𝑋 ∈ {1o, 2o}
4 funsng 6567 . . . 4 ((dom 𝐴 ∈ V ∧ 𝑋 ∈ {1o, 2o}) → Fun {⟨dom 𝐴, 𝑋⟩})
52, 3, 4sylancl 586 . . 3 (𝐴 No → Fun {⟨dom 𝐴, 𝑋⟩})
63elexi 3470 . . . . . 6 𝑋 ∈ V
76dmsnop 6189 . . . . 5 dom {⟨dom 𝐴, 𝑋⟩} = {dom 𝐴}
87ineq2i 4180 . . . 4 (dom 𝐴 ∩ dom {⟨dom 𝐴, 𝑋⟩}) = (dom 𝐴 ∩ {dom 𝐴})
9 nodmord 27565 . . . . . 6 (𝐴 No → Ord dom 𝐴)
10 ordirr 6350 . . . . . 6 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
119, 10syl 17 . . . . 5 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
12 disjsn 4675 . . . . 5 ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴)
1311, 12sylibr 234 . . . 4 (𝐴 No → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
148, 13eqtrid 2776 . . 3 (𝐴 No → (dom 𝐴 ∩ dom {⟨dom 𝐴, 𝑋⟩}) = ∅)
15 funun 6562 . . 3 (((Fun 𝐴 ∧ Fun {⟨dom 𝐴, 𝑋⟩}) ∧ (dom 𝐴 ∩ dom {⟨dom 𝐴, 𝑋⟩}) = ∅) → Fun (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}))
161, 5, 14, 15syl21anc 837 . 2 (𝐴 No → Fun (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}))
177uneq2i 4128 . . . 4 (dom 𝐴 ∪ dom {⟨dom 𝐴, 𝑋⟩}) = (dom 𝐴 ∪ {dom 𝐴})
18 dmun 5874 . . . 4 dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = (dom 𝐴 ∪ dom {⟨dom 𝐴, 𝑋⟩})
19 df-suc 6338 . . . 4 suc dom 𝐴 = (dom 𝐴 ∪ {dom 𝐴})
2017, 18, 193eqtr4i 2762 . . 3 dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = suc dom 𝐴
21 nodmon 27562 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
22 onsuc 7787 . . . 4 (dom 𝐴 ∈ On → suc dom 𝐴 ∈ On)
2321, 22syl 17 . . 3 (𝐴 No → suc dom 𝐴 ∈ On)
2420, 23eqeltrid 2832 . 2 (𝐴 No → dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ On)
25 rnun 6118 . . . 4 ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = (ran 𝐴 ∪ ran {⟨dom 𝐴, 𝑋⟩})
26 rnsnopg 6194 . . . . . 6 (dom 𝐴 ∈ V → ran {⟨dom 𝐴, 𝑋⟩} = {𝑋})
272, 26syl 17 . . . . 5 (𝐴 No → ran {⟨dom 𝐴, 𝑋⟩} = {𝑋})
2827uneq2d 4131 . . . 4 (𝐴 No → (ran 𝐴 ∪ ran {⟨dom 𝐴, 𝑋⟩}) = (ran 𝐴 ∪ {𝑋}))
2925, 28eqtrid 2776 . . 3 (𝐴 No → ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = (ran 𝐴 ∪ {𝑋}))
30 norn 27563 . . . 4 (𝐴 No → ran 𝐴 ⊆ {1o, 2o})
31 snssi 4772 . . . . 5 (𝑋 ∈ {1o, 2o} → {𝑋} ⊆ {1o, 2o})
323, 31mp1i 13 . . . 4 (𝐴 No → {𝑋} ⊆ {1o, 2o})
3330, 32unssd 4155 . . 3 (𝐴 No → (ran 𝐴 ∪ {𝑋}) ⊆ {1o, 2o})
3429, 33eqsstrd 3981 . 2 (𝐴 No → ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ⊆ {1o, 2o})
35 elno2 27566 . 2 ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ No ↔ (Fun (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∧ dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ On ∧ ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ⊆ {1o, 2o}))
3616, 24, 34, 35syl3anbrc 1344 1 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  cin 3913  wss 3914  c0 4296  {csn 4589  {cpr 4591  cop 4595  dom cdm 5638  ran crn 5639  Ord word 6331  Oncon0 6332  suc csuc 6334  Fun wfun 6505  1oc1o 8427  2oc2o 8428   No csur 27551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-ord 6335  df-on 6336  df-suc 6338  df-fun 6513  df-fn 6514  df-f 6515  df-no 27554
This theorem is referenced by:  noextendlt  27581  noextendgt  27582  nosupno  27615  nosupbnd1  27626  nosupbnd2lem1  27627  noinfno  27630  noinfbnd1  27641  noinfbnd2lem1  27642
  Copyright terms: Public domain W3C validator