Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noextend Structured version   Visualization version   GIF version

Theorem noextend 32263
Description: Extending a surreal by one sign value results in a new surreal. (Contributed by Scott Fenton, 22-Nov-2021.)
Hypothesis
Ref Expression
noextend.1 𝑋 ∈ {1𝑜, 2𝑜}
Assertion
Ref Expression
noextend (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ No )

Proof of Theorem noextend
StepHypRef Expression
1 nofun 32246 . . 3 (𝐴 No → Fun 𝐴)
2 dmexg 7295 . . . 4 (𝐴 No → dom 𝐴 ∈ V)
3 noextend.1 . . . 4 𝑋 ∈ {1𝑜, 2𝑜}
4 funsng 6118 . . . 4 ((dom 𝐴 ∈ V ∧ 𝑋 ∈ {1𝑜, 2𝑜}) → Fun {⟨dom 𝐴, 𝑋⟩})
52, 3, 4sylancl 580 . . 3 (𝐴 No → Fun {⟨dom 𝐴, 𝑋⟩})
63elexi 3366 . . . . . 6 𝑋 ∈ V
76dmsnop 5793 . . . . 5 dom {⟨dom 𝐴, 𝑋⟩} = {dom 𝐴}
87ineq2i 3973 . . . 4 (dom 𝐴 ∩ dom {⟨dom 𝐴, 𝑋⟩}) = (dom 𝐴 ∩ {dom 𝐴})
9 nodmord 32250 . . . . . 6 (𝐴 No → Ord dom 𝐴)
10 ordirr 5926 . . . . . 6 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
119, 10syl 17 . . . . 5 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
12 disjsn 4402 . . . . 5 ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴)
1311, 12sylibr 225 . . . 4 (𝐴 No → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
148, 13syl5eq 2811 . . 3 (𝐴 No → (dom 𝐴 ∩ dom {⟨dom 𝐴, 𝑋⟩}) = ∅)
15 funun 6113 . . 3 (((Fun 𝐴 ∧ Fun {⟨dom 𝐴, 𝑋⟩}) ∧ (dom 𝐴 ∩ dom {⟨dom 𝐴, 𝑋⟩}) = ∅) → Fun (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}))
161, 5, 14, 15syl21anc 866 . 2 (𝐴 No → Fun (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}))
177uneq2i 3926 . . . 4 (dom 𝐴 ∪ dom {⟨dom 𝐴, 𝑋⟩}) = (dom 𝐴 ∪ {dom 𝐴})
18 dmun 5499 . . . 4 dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = (dom 𝐴 ∪ dom {⟨dom 𝐴, 𝑋⟩})
19 df-suc 5914 . . . 4 suc dom 𝐴 = (dom 𝐴 ∪ {dom 𝐴})
2017, 18, 193eqtr4i 2797 . . 3 dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = suc dom 𝐴
21 nodmon 32247 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
22 suceloni 7211 . . . 4 (dom 𝐴 ∈ On → suc dom 𝐴 ∈ On)
2321, 22syl 17 . . 3 (𝐴 No → suc dom 𝐴 ∈ On)
2420, 23syl5eqel 2848 . 2 (𝐴 No → dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ On)
25 rnun 5724 . . . 4 ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = (ran 𝐴 ∪ ran {⟨dom 𝐴, 𝑋⟩})
26 rnsnopg 5798 . . . . . 6 (dom 𝐴 ∈ V → ran {⟨dom 𝐴, 𝑋⟩} = {𝑋})
272, 26syl 17 . . . . 5 (𝐴 No → ran {⟨dom 𝐴, 𝑋⟩} = {𝑋})
2827uneq2d 3929 . . . 4 (𝐴 No → (ran 𝐴 ∪ ran {⟨dom 𝐴, 𝑋⟩}) = (ran 𝐴 ∪ {𝑋}))
2925, 28syl5eq 2811 . . 3 (𝐴 No → ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = (ran 𝐴 ∪ {𝑋}))
30 norn 32248 . . . 4 (𝐴 No → ran 𝐴 ⊆ {1𝑜, 2𝑜})
31 snssi 4493 . . . . 5 (𝑋 ∈ {1𝑜, 2𝑜} → {𝑋} ⊆ {1𝑜, 2𝑜})
323, 31mp1i 13 . . . 4 (𝐴 No → {𝑋} ⊆ {1𝑜, 2𝑜})
3330, 32unssd 3951 . . 3 (𝐴 No → (ran 𝐴 ∪ {𝑋}) ⊆ {1𝑜, 2𝑜})
3429, 33eqsstrd 3799 . 2 (𝐴 No → ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ⊆ {1𝑜, 2𝑜})
35 elno2 32251 . 2 ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ No ↔ (Fun (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∧ dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ On ∧ ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ⊆ {1𝑜, 2𝑜}))
3616, 24, 34, 35syl3anbrc 1443 1 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1652  wcel 2155  Vcvv 3350  cun 3730  cin 3731  wss 3732  c0 4079  {csn 4334  {cpr 4336  cop 4340  dom cdm 5277  ran crn 5278  Ord word 5907  Oncon0 5908  suc csuc 5910  Fun wfun 6062  1𝑜c1o 7757  2𝑜c2o 7758   No csur 32237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-ord 5911  df-on 5912  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-no 32240
This theorem is referenced by:  noextendlt  32266  noextendgt  32267  nosupno  32293  nosupbnd1  32304  nosupbnd2lem1  32305
  Copyright terms: Public domain W3C validator