MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noextend Structured version   Visualization version   GIF version

Theorem noextend 27594
Description: Extending a surreal by one sign value results in a new surreal. (Contributed by Scott Fenton, 22-Nov-2021.)
Hypothesis
Ref Expression
noextend.1 𝑋 ∈ {1o, 2o}
Assertion
Ref Expression
noextend (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ No )

Proof of Theorem noextend
StepHypRef Expression
1 nofun 27577 . . 3 (𝐴 No → Fun 𝐴)
2 dmexg 7841 . . . 4 (𝐴 No → dom 𝐴 ∈ V)
3 noextend.1 . . . 4 𝑋 ∈ {1o, 2o}
4 funsng 6537 . . . 4 ((dom 𝐴 ∈ V ∧ 𝑋 ∈ {1o, 2o}) → Fun {⟨dom 𝐴, 𝑋⟩})
52, 3, 4sylancl 586 . . 3 (𝐴 No → Fun {⟨dom 𝐴, 𝑋⟩})
63elexi 3461 . . . . . 6 𝑋 ∈ V
76dmsnop 6169 . . . . 5 dom {⟨dom 𝐴, 𝑋⟩} = {dom 𝐴}
87ineq2i 4170 . . . 4 (dom 𝐴 ∩ dom {⟨dom 𝐴, 𝑋⟩}) = (dom 𝐴 ∩ {dom 𝐴})
9 nodmord 27581 . . . . . 6 (𝐴 No → Ord dom 𝐴)
10 ordirr 6329 . . . . . 6 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
119, 10syl 17 . . . . 5 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
12 disjsn 4665 . . . . 5 ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴)
1311, 12sylibr 234 . . . 4 (𝐴 No → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
148, 13eqtrid 2776 . . 3 (𝐴 No → (dom 𝐴 ∩ dom {⟨dom 𝐴, 𝑋⟩}) = ∅)
15 funun 6532 . . 3 (((Fun 𝐴 ∧ Fun {⟨dom 𝐴, 𝑋⟩}) ∧ (dom 𝐴 ∩ dom {⟨dom 𝐴, 𝑋⟩}) = ∅) → Fun (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}))
161, 5, 14, 15syl21anc 837 . 2 (𝐴 No → Fun (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}))
177uneq2i 4118 . . . 4 (dom 𝐴 ∪ dom {⟨dom 𝐴, 𝑋⟩}) = (dom 𝐴 ∪ {dom 𝐴})
18 dmun 5857 . . . 4 dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = (dom 𝐴 ∪ dom {⟨dom 𝐴, 𝑋⟩})
19 df-suc 6317 . . . 4 suc dom 𝐴 = (dom 𝐴 ∪ {dom 𝐴})
2017, 18, 193eqtr4i 2762 . . 3 dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = suc dom 𝐴
21 nodmon 27578 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
22 onsuc 7751 . . . 4 (dom 𝐴 ∈ On → suc dom 𝐴 ∈ On)
2321, 22syl 17 . . 3 (𝐴 No → suc dom 𝐴 ∈ On)
2420, 23eqeltrid 2832 . 2 (𝐴 No → dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ On)
25 rnun 6098 . . . 4 ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = (ran 𝐴 ∪ ran {⟨dom 𝐴, 𝑋⟩})
26 rnsnopg 6174 . . . . . 6 (dom 𝐴 ∈ V → ran {⟨dom 𝐴, 𝑋⟩} = {𝑋})
272, 26syl 17 . . . . 5 (𝐴 No → ran {⟨dom 𝐴, 𝑋⟩} = {𝑋})
2827uneq2d 4121 . . . 4 (𝐴 No → (ran 𝐴 ∪ ran {⟨dom 𝐴, 𝑋⟩}) = (ran 𝐴 ∪ {𝑋}))
2925, 28eqtrid 2776 . . 3 (𝐴 No → ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = (ran 𝐴 ∪ {𝑋}))
30 norn 27579 . . . 4 (𝐴 No → ran 𝐴 ⊆ {1o, 2o})
31 snssi 4762 . . . . 5 (𝑋 ∈ {1o, 2o} → {𝑋} ⊆ {1o, 2o})
323, 31mp1i 13 . . . 4 (𝐴 No → {𝑋} ⊆ {1o, 2o})
3330, 32unssd 4145 . . 3 (𝐴 No → (ran 𝐴 ∪ {𝑋}) ⊆ {1o, 2o})
3429, 33eqsstrd 3972 . 2 (𝐴 No → ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ⊆ {1o, 2o})
35 elno2 27582 . 2 ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ No ↔ (Fun (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∧ dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ On ∧ ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ⊆ {1o, 2o}))
3616, 24, 34, 35syl3anbrc 1344 1 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  cun 3903  cin 3904  wss 3905  c0 4286  {csn 4579  {cpr 4581  cop 4585  dom cdm 5623  ran crn 5624  Ord word 6310  Oncon0 6311  suc csuc 6313  Fun wfun 6480  1oc1o 8388  2oc2o 8389   No csur 27567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-ord 6314  df-on 6315  df-suc 6317  df-fun 6488  df-fn 6489  df-f 6490  df-no 27570
This theorem is referenced by:  noextendlt  27597  noextendgt  27598  nosupno  27631  nosupbnd1  27642  nosupbnd2lem1  27643  noinfno  27646  noinfbnd1  27657  noinfbnd2lem1  27658
  Copyright terms: Public domain W3C validator