Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noextend Structured version   Visualization version   GIF version

Theorem noextend 33076
Description: Extending a surreal by one sign value results in a new surreal. (Contributed by Scott Fenton, 22-Nov-2021.)
Hypothesis
Ref Expression
noextend.1 𝑋 ∈ {1o, 2o}
Assertion
Ref Expression
noextend (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ No )

Proof of Theorem noextend
StepHypRef Expression
1 nofun 33059 . . 3 (𝐴 No → Fun 𝐴)
2 dmexg 7606 . . . 4 (𝐴 No → dom 𝐴 ∈ V)
3 noextend.1 . . . 4 𝑋 ∈ {1o, 2o}
4 funsng 6404 . . . 4 ((dom 𝐴 ∈ V ∧ 𝑋 ∈ {1o, 2o}) → Fun {⟨dom 𝐴, 𝑋⟩})
52, 3, 4sylancl 586 . . 3 (𝐴 No → Fun {⟨dom 𝐴, 𝑋⟩})
63elexi 3519 . . . . . 6 𝑋 ∈ V
76dmsnop 6072 . . . . 5 dom {⟨dom 𝐴, 𝑋⟩} = {dom 𝐴}
87ineq2i 4190 . . . 4 (dom 𝐴 ∩ dom {⟨dom 𝐴, 𝑋⟩}) = (dom 𝐴 ∩ {dom 𝐴})
9 nodmord 33063 . . . . . 6 (𝐴 No → Ord dom 𝐴)
10 ordirr 6208 . . . . . 6 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
119, 10syl 17 . . . . 5 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
12 disjsn 4646 . . . . 5 ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴)
1311, 12sylibr 235 . . . 4 (𝐴 No → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
148, 13syl5eq 2873 . . 3 (𝐴 No → (dom 𝐴 ∩ dom {⟨dom 𝐴, 𝑋⟩}) = ∅)
15 funun 6399 . . 3 (((Fun 𝐴 ∧ Fun {⟨dom 𝐴, 𝑋⟩}) ∧ (dom 𝐴 ∩ dom {⟨dom 𝐴, 𝑋⟩}) = ∅) → Fun (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}))
161, 5, 14, 15syl21anc 835 . 2 (𝐴 No → Fun (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}))
177uneq2i 4140 . . . 4 (dom 𝐴 ∪ dom {⟨dom 𝐴, 𝑋⟩}) = (dom 𝐴 ∪ {dom 𝐴})
18 dmun 5778 . . . 4 dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = (dom 𝐴 ∪ dom {⟨dom 𝐴, 𝑋⟩})
19 df-suc 6196 . . . 4 suc dom 𝐴 = (dom 𝐴 ∪ {dom 𝐴})
2017, 18, 193eqtr4i 2859 . . 3 dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = suc dom 𝐴
21 nodmon 33060 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
22 suceloni 7521 . . . 4 (dom 𝐴 ∈ On → suc dom 𝐴 ∈ On)
2321, 22syl 17 . . 3 (𝐴 No → suc dom 𝐴 ∈ On)
2420, 23eqeltrid 2922 . 2 (𝐴 No → dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ On)
25 rnun 6003 . . . 4 ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = (ran 𝐴 ∪ ran {⟨dom 𝐴, 𝑋⟩})
26 rnsnopg 6077 . . . . . 6 (dom 𝐴 ∈ V → ran {⟨dom 𝐴, 𝑋⟩} = {𝑋})
272, 26syl 17 . . . . 5 (𝐴 No → ran {⟨dom 𝐴, 𝑋⟩} = {𝑋})
2827uneq2d 4143 . . . 4 (𝐴 No → (ran 𝐴 ∪ ran {⟨dom 𝐴, 𝑋⟩}) = (ran 𝐴 ∪ {𝑋}))
2925, 28syl5eq 2873 . . 3 (𝐴 No → ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) = (ran 𝐴 ∪ {𝑋}))
30 norn 33061 . . . 4 (𝐴 No → ran 𝐴 ⊆ {1o, 2o})
31 snssi 4740 . . . . 5 (𝑋 ∈ {1o, 2o} → {𝑋} ⊆ {1o, 2o})
323, 31mp1i 13 . . . 4 (𝐴 No → {𝑋} ⊆ {1o, 2o})
3330, 32unssd 4166 . . 3 (𝐴 No → (ran 𝐴 ∪ {𝑋}) ⊆ {1o, 2o})
3429, 33eqsstrd 4009 . 2 (𝐴 No → ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ⊆ {1o, 2o})
35 elno2 33064 . 2 ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ No ↔ (Fun (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∧ dom (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ On ∧ ran (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ⊆ {1o, 2o}))
3616, 24, 34, 35syl3anbrc 1337 1 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1530  wcel 2107  Vcvv 3500  cun 3938  cin 3939  wss 3940  c0 4295  {csn 4564  {cpr 4566  cop 4570  dom cdm 5554  ran crn 5555  Ord word 6189  Oncon0 6190  suc csuc 6192  Fun wfun 6348  1oc1o 8091  2oc2o 8092   No csur 33050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-ord 6193  df-on 6194  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-no 33053
This theorem is referenced by:  noextendlt  33079  noextendgt  33080  nosupno  33106  nosupbnd1  33117  nosupbnd2lem1  33118
  Copyright terms: Public domain W3C validator