MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1loopgredg Structured version   Visualization version   GIF version

Theorem 1loopgredg 29446
Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop is a singleton of a singleton. (Contributed by AV, 17-Dec-2020.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1loopgruspgr.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1loopgruspgr.a (𝜑𝐴𝑋)
1loopgruspgr.n (𝜑𝑁𝑉)
1loopgruspgr.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
Assertion
Ref Expression
1loopgredg (𝜑 → (Edg‘𝐺) = {{𝑁}})

Proof of Theorem 1loopgredg
StepHypRef Expression
1 edgval 28993 . . 3 (Edg‘𝐺) = ran (iEdg‘𝐺)
21a1i 11 . 2 (𝜑 → (Edg‘𝐺) = ran (iEdg‘𝐺))
3 1loopgruspgr.i . . 3 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
43rneqd 5929 . 2 (𝜑 → ran (iEdg‘𝐺) = ran {⟨𝐴, {𝑁}⟩})
5 1loopgruspgr.a . . 3 (𝜑𝐴𝑋)
6 rnsnopg 6221 . . 3 (𝐴𝑋 → ran {⟨𝐴, {𝑁}⟩} = {{𝑁}})
75, 6syl 17 . 2 (𝜑 → ran {⟨𝐴, {𝑁}⟩} = {{𝑁}})
82, 4, 73eqtrd 2773 1 (𝜑 → (Edg‘𝐺) = {{𝑁}})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {csn 4606  cop 4612  ran crn 5666  cfv 6540  Vtxcvtx 28940  iEdgciedg 28941  Edgcedg 28991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-iota 6493  df-fun 6542  df-fv 6548  df-edg 28992
This theorem is referenced by:  1loopgrnb0  29447  1loopgrvd2  29448
  Copyright terms: Public domain W3C validator