| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1loopgredg | Structured version Visualization version GIF version | ||
| Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop is a singleton of a singleton. (Contributed by AV, 17-Dec-2020.) (Revised by AV, 21-Feb-2021.) |
| Ref | Expression |
|---|---|
| 1loopgruspgr.v | ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
| 1loopgruspgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 1loopgruspgr.n | ⊢ (𝜑 → 𝑁 ∈ 𝑉) |
| 1loopgruspgr.i | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) |
| Ref | Expression |
|---|---|
| 1loopgredg | ⊢ (𝜑 → (Edg‘𝐺) = {{𝑁}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgval 28983 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 3 | 1loopgruspgr.i | . . 3 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) | |
| 4 | 3 | rneqd 5910 | . 2 ⊢ (𝜑 → ran (iEdg‘𝐺) = ran {〈𝐴, {𝑁}〉}) |
| 5 | 1loopgruspgr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 6 | rnsnopg 6202 | . . 3 ⊢ (𝐴 ∈ 𝑋 → ran {〈𝐴, {𝑁}〉} = {{𝑁}}) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → ran {〈𝐴, {𝑁}〉} = {{𝑁}}) |
| 8 | 2, 4, 7 | 3eqtrd 2769 | 1 ⊢ (𝜑 → (Edg‘𝐺) = {{𝑁}}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4597 〈cop 4603 ran crn 5647 ‘cfv 6519 Vtxcvtx 28930 iEdgciedg 28931 Edgcedg 28981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-iota 6472 df-fun 6521 df-fv 6527 df-edg 28982 |
| This theorem is referenced by: 1loopgrnb0 29437 1loopgrvd2 29438 |
| Copyright terms: Public domain | W3C validator |