| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1loopgredg | Structured version Visualization version GIF version | ||
| Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop is a singleton of a singleton. (Contributed by AV, 17-Dec-2020.) (Revised by AV, 21-Feb-2021.) |
| Ref | Expression |
|---|---|
| 1loopgruspgr.v | ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
| 1loopgruspgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 1loopgruspgr.n | ⊢ (𝜑 → 𝑁 ∈ 𝑉) |
| 1loopgruspgr.i | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) |
| Ref | Expression |
|---|---|
| 1loopgredg | ⊢ (𝜑 → (Edg‘𝐺) = {{𝑁}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgval 29025 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 3 | 1loopgruspgr.i | . . 3 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) | |
| 4 | 3 | rneqd 5878 | . 2 ⊢ (𝜑 → ran (iEdg‘𝐺) = ran {〈𝐴, {𝑁}〉}) |
| 5 | 1loopgruspgr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 6 | rnsnopg 6168 | . . 3 ⊢ (𝐴 ∈ 𝑋 → ran {〈𝐴, {𝑁}〉} = {{𝑁}}) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → ran {〈𝐴, {𝑁}〉} = {{𝑁}}) |
| 8 | 2, 4, 7 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (Edg‘𝐺) = {{𝑁}}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4576 〈cop 4582 ran crn 5617 ‘cfv 6481 Vtxcvtx 28972 iEdgciedg 28973 Edgcedg 29023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-edg 29024 |
| This theorem is referenced by: 1loopgrnb0 29479 1loopgrvd2 29480 |
| Copyright terms: Public domain | W3C validator |