![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1loopgredg | Structured version Visualization version GIF version |
Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop is a singleton of a singleton. (Contributed by AV, 17-Dec-2020.) (Revised by AV, 21-Feb-2021.) |
Ref | Expression |
---|---|
1loopgruspgr.v | ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
1loopgruspgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
1loopgruspgr.n | ⊢ (𝜑 → 𝑁 ∈ 𝑉) |
1loopgruspgr.i | ⊢ (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩}) |
Ref | Expression |
---|---|
1loopgredg | ⊢ (𝜑 → (Edg‘𝐺) = {{𝑁}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval 28573 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
3 | 1loopgruspgr.i | . . 3 ⊢ (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩}) | |
4 | 3 | rneqd 5938 | . 2 ⊢ (𝜑 → ran (iEdg‘𝐺) = ran {⟨𝐴, {𝑁}⟩}) |
5 | 1loopgruspgr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
6 | rnsnopg 6221 | . . 3 ⊢ (𝐴 ∈ 𝑋 → ran {⟨𝐴, {𝑁}⟩} = {{𝑁}}) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → ran {⟨𝐴, {𝑁}⟩} = {{𝑁}}) |
8 | 2, 4, 7 | 3eqtrd 2775 | 1 ⊢ (𝜑 → (Edg‘𝐺) = {{𝑁}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {csn 4629 ⟨cop 4635 ran crn 5678 ‘cfv 6544 Vtxcvtx 28520 iEdgciedg 28521 Edgcedg 28571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 df-edg 28572 |
This theorem is referenced by: 1loopgrnb0 29023 1loopgrvd2 29024 |
Copyright terms: Public domain | W3C validator |