MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1loopgredg Structured version   Visualization version   GIF version

Theorem 1loopgredg 29545
Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop is a singleton of a singleton. (Contributed by AV, 17-Dec-2020.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1loopgruspgr.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1loopgruspgr.a (𝜑𝐴𝑋)
1loopgruspgr.n (𝜑𝑁𝑉)
1loopgruspgr.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
Assertion
Ref Expression
1loopgredg (𝜑 → (Edg‘𝐺) = {{𝑁}})

Proof of Theorem 1loopgredg
StepHypRef Expression
1 edgval 29092 . . 3 (Edg‘𝐺) = ran (iEdg‘𝐺)
21a1i 11 . 2 (𝜑 → (Edg‘𝐺) = ran (iEdg‘𝐺))
3 1loopgruspgr.i . . 3 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
43rneqd 5956 . 2 (𝜑 → ran (iEdg‘𝐺) = ran {⟨𝐴, {𝑁}⟩})
5 1loopgruspgr.a . . 3 (𝜑𝐴𝑋)
6 rnsnopg 6249 . . 3 (𝐴𝑋 → ran {⟨𝐴, {𝑁}⟩} = {{𝑁}})
75, 6syl 17 . 2 (𝜑 → ran {⟨𝐴, {𝑁}⟩} = {{𝑁}})
82, 4, 73eqtrd 2781 1 (𝜑 → (Edg‘𝐺) = {{𝑁}})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {csn 4634  cop 4640  ran crn 5694  cfv 6569  Vtxcvtx 29039  iEdgciedg 29040  Edgcedg 29090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-iota 6522  df-fun 6571  df-fv 6577  df-edg 29091
This theorem is referenced by:  1loopgrnb0  29546  1loopgrvd2  29547
  Copyright terms: Public domain W3C validator