MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1loopgredg Structured version   Visualization version   GIF version

Theorem 1loopgredg 29436
Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop is a singleton of a singleton. (Contributed by AV, 17-Dec-2020.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1loopgruspgr.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1loopgruspgr.a (𝜑𝐴𝑋)
1loopgruspgr.n (𝜑𝑁𝑉)
1loopgruspgr.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
Assertion
Ref Expression
1loopgredg (𝜑 → (Edg‘𝐺) = {{𝑁}})

Proof of Theorem 1loopgredg
StepHypRef Expression
1 edgval 28983 . . 3 (Edg‘𝐺) = ran (iEdg‘𝐺)
21a1i 11 . 2 (𝜑 → (Edg‘𝐺) = ran (iEdg‘𝐺))
3 1loopgruspgr.i . . 3 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
43rneqd 5910 . 2 (𝜑 → ran (iEdg‘𝐺) = ran {⟨𝐴, {𝑁}⟩})
5 1loopgruspgr.a . . 3 (𝜑𝐴𝑋)
6 rnsnopg 6202 . . 3 (𝐴𝑋 → ran {⟨𝐴, {𝑁}⟩} = {{𝑁}})
75, 6syl 17 . 2 (𝜑 → ran {⟨𝐴, {𝑁}⟩} = {{𝑁}})
82, 4, 73eqtrd 2769 1 (𝜑 → (Edg‘𝐺) = {{𝑁}})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4597  cop 4603  ran crn 5647  cfv 6519  Vtxcvtx 28930  iEdgciedg 28931  Edgcedg 28981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-iota 6472  df-fun 6521  df-fv 6527  df-edg 28982
This theorem is referenced by:  1loopgrnb0  29437  1loopgrvd2  29438
  Copyright terms: Public domain W3C validator