Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1loopgredg | Structured version Visualization version GIF version |
Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop is a singleton of a singleton. (Contributed by AV, 17-Dec-2020.) (Revised by AV, 21-Feb-2021.) |
Ref | Expression |
---|---|
1loopgruspgr.v | ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
1loopgruspgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
1loopgruspgr.n | ⊢ (𝜑 → 𝑁 ∈ 𝑉) |
1loopgruspgr.i | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) |
Ref | Expression |
---|---|
1loopgredg | ⊢ (𝜑 → (Edg‘𝐺) = {{𝑁}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval 27429 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
3 | 1loopgruspgr.i | . . 3 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) | |
4 | 3 | rneqd 5840 | . 2 ⊢ (𝜑 → ran (iEdg‘𝐺) = ran {〈𝐴, {𝑁}〉}) |
5 | 1loopgruspgr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
6 | rnsnopg 6117 | . . 3 ⊢ (𝐴 ∈ 𝑋 → ran {〈𝐴, {𝑁}〉} = {{𝑁}}) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → ran {〈𝐴, {𝑁}〉} = {{𝑁}}) |
8 | 2, 4, 7 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (Edg‘𝐺) = {{𝑁}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {csn 4561 〈cop 4567 ran crn 5585 ‘cfv 6426 Vtxcvtx 27376 iEdgciedg 27377 Edgcedg 27427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 ax-un 7578 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-iota 6384 df-fun 6428 df-fv 6434 df-edg 27428 |
This theorem is referenced by: 1loopgrnb0 27879 1loopgrvd2 27880 |
Copyright terms: Public domain | W3C validator |