![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgr1e | Structured version Visualization version GIF version |
Description: A simple graph with one edge (with additional assumption that 𝐵 ≠ 𝐶 since otherwise the edge is a loop!). (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 18-Oct-2020.) |
Ref | Expression |
---|---|
uspgr1e.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uspgr1e.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
uspgr1e.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
uspgr1e.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
uspgr1e.e | ⊢ (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) |
usgr1e.e | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Ref | Expression |
---|---|
usgr1e | ⊢ (𝜑 → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgr1e.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | uspgr1e.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
3 | uspgr1e.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | uspgr1e.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
5 | uspgr1e.e | . . 3 ⊢ (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) | |
6 | 1, 2, 3, 4, 5 | uspgr1e 28490 | . 2 ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
7 | usgr1e.e | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
8 | hashprg 14351 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 ≠ 𝐶 ↔ (♯‘{𝐵, 𝐶}) = 2)) | |
9 | 3, 4, 8 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐵 ≠ 𝐶 ↔ (♯‘{𝐵, 𝐶}) = 2)) |
10 | 7, 9 | mpbid 231 | . . . 4 ⊢ (𝜑 → (♯‘{𝐵, 𝐶}) = 2) |
11 | prex 5431 | . . . . 5 ⊢ {𝐵, 𝐶} ∈ V | |
12 | fveqeq2 6897 | . . . . 5 ⊢ (𝑥 = {𝐵, 𝐶} → ((♯‘𝑥) = 2 ↔ (♯‘{𝐵, 𝐶}) = 2)) | |
13 | 11, 12 | ralsn 4684 | . . . 4 ⊢ (∀𝑥 ∈ {{𝐵, 𝐶}} (♯‘𝑥) = 2 ↔ (♯‘{𝐵, 𝐶}) = 2) |
14 | 10, 13 | sylibr 233 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ {{𝐵, 𝐶}} (♯‘𝑥) = 2) |
15 | edgval 28298 | . . . . . 6 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
17 | 5 | rneqd 5935 | . . . . 5 ⊢ (𝜑 → ran (iEdg‘𝐺) = ran {⟨𝐴, {𝐵, 𝐶}⟩}) |
18 | rnsnopg 6217 | . . . . . 6 ⊢ (𝐴 ∈ 𝑋 → ran {⟨𝐴, {𝐵, 𝐶}⟩} = {{𝐵, 𝐶}}) | |
19 | 2, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → ran {⟨𝐴, {𝐵, 𝐶}⟩} = {{𝐵, 𝐶}}) |
20 | 16, 17, 19 | 3eqtrd 2776 | . . . 4 ⊢ (𝜑 → (Edg‘𝐺) = {{𝐵, 𝐶}}) |
21 | 20 | raleqdv 3325 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 2 ↔ ∀𝑥 ∈ {{𝐵, 𝐶}} (♯‘𝑥) = 2)) |
22 | 14, 21 | mpbird 256 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 2) |
23 | usgruspgrb 28430 | . 2 ⊢ (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 2)) | |
24 | 6, 22, 23 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 {csn 4627 {cpr 4629 ⟨cop 4633 ran crn 5676 ‘cfv 6540 2c2 12263 ♯chash 14286 Vtxcvtx 28245 iEdgciedg 28246 Edgcedg 28296 USPGraphcuspgr 28397 USGraphcusgr 28398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-fz 13481 df-hash 14287 df-edg 28297 df-uspgr 28399 df-usgr 28400 |
This theorem is referenced by: usgr1eop 28496 1egrvtxdg1 28755 1egrvtxdg0 28757 |
Copyright terms: Public domain | W3C validator |