MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr1e Structured version   Visualization version   GIF version

Theorem usgr1e 27515
Description: A simple graph with one edge (with additional assumption that 𝐵𝐶 since otherwise the edge is a loop!). (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
uspgr1e.v 𝑉 = (Vtx‘𝐺)
uspgr1e.a (𝜑𝐴𝑋)
uspgr1e.b (𝜑𝐵𝑉)
uspgr1e.c (𝜑𝐶𝑉)
uspgr1e.e (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
usgr1e.e (𝜑𝐵𝐶)
Assertion
Ref Expression
usgr1e (𝜑𝐺 ∈ USGraph)

Proof of Theorem usgr1e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uspgr1e.v . . 3 𝑉 = (Vtx‘𝐺)
2 uspgr1e.a . . 3 (𝜑𝐴𝑋)
3 uspgr1e.b . . 3 (𝜑𝐵𝑉)
4 uspgr1e.c . . 3 (𝜑𝐶𝑉)
5 uspgr1e.e . . 3 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
61, 2, 3, 4, 5uspgr1e 27514 . 2 (𝜑𝐺 ∈ USPGraph)
7 usgr1e.e . . . . 5 (𝜑𝐵𝐶)
8 hashprg 14038 . . . . . 6 ((𝐵𝑉𝐶𝑉) → (𝐵𝐶 ↔ (♯‘{𝐵, 𝐶}) = 2))
93, 4, 8syl2anc 583 . . . . 5 (𝜑 → (𝐵𝐶 ↔ (♯‘{𝐵, 𝐶}) = 2))
107, 9mpbid 231 . . . 4 (𝜑 → (♯‘{𝐵, 𝐶}) = 2)
11 prex 5350 . . . . 5 {𝐵, 𝐶} ∈ V
12 fveqeq2 6765 . . . . 5 (𝑥 = {𝐵, 𝐶} → ((♯‘𝑥) = 2 ↔ (♯‘{𝐵, 𝐶}) = 2))
1311, 12ralsn 4614 . . . 4 (∀𝑥 ∈ {{𝐵, 𝐶}} (♯‘𝑥) = 2 ↔ (♯‘{𝐵, 𝐶}) = 2)
1410, 13sylibr 233 . . 3 (𝜑 → ∀𝑥 ∈ {{𝐵, 𝐶}} (♯‘𝑥) = 2)
15 edgval 27322 . . . . . 6 (Edg‘𝐺) = ran (iEdg‘𝐺)
1615a1i 11 . . . . 5 (𝜑 → (Edg‘𝐺) = ran (iEdg‘𝐺))
175rneqd 5836 . . . . 5 (𝜑 → ran (iEdg‘𝐺) = ran {⟨𝐴, {𝐵, 𝐶}⟩})
18 rnsnopg 6113 . . . . . 6 (𝐴𝑋 → ran {⟨𝐴, {𝐵, 𝐶}⟩} = {{𝐵, 𝐶}})
192, 18syl 17 . . . . 5 (𝜑 → ran {⟨𝐴, {𝐵, 𝐶}⟩} = {{𝐵, 𝐶}})
2016, 17, 193eqtrd 2782 . . . 4 (𝜑 → (Edg‘𝐺) = {{𝐵, 𝐶}})
2120raleqdv 3339 . . 3 (𝜑 → (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 2 ↔ ∀𝑥 ∈ {{𝐵, 𝐶}} (♯‘𝑥) = 2))
2214, 21mpbird 256 . 2 (𝜑 → ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 2)
23 usgruspgrb 27454 . 2 (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 2))
246, 22, 23sylanbrc 582 1 (𝜑𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  wne 2942  wral 3063  {csn 4558  {cpr 4560  cop 4564  ran crn 5581  cfv 6418  2c2 11958  chash 13972  Vtxcvtx 27269  iEdgciedg 27270  Edgcedg 27320  USPGraphcuspgr 27421  USGraphcusgr 27422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-edg 27321  df-uspgr 27423  df-usgr 27424
This theorem is referenced by:  usgr1eop  27520  1egrvtxdg1  27779  1egrvtxdg0  27781
  Copyright terms: Public domain W3C validator