MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr1e Structured version   Visualization version   GIF version

Theorem usgr1e 26720
Description: A simple graph with one edge (with additional assumption that 𝐵𝐶 since otherwise the edge is a loop!). (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
uspgr1e.v 𝑉 = (Vtx‘𝐺)
uspgr1e.a (𝜑𝐴𝑋)
uspgr1e.b (𝜑𝐵𝑉)
uspgr1e.c (𝜑𝐶𝑉)
uspgr1e.e (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
usgr1e.e (𝜑𝐵𝐶)
Assertion
Ref Expression
usgr1e (𝜑𝐺 ∈ USGraph)

Proof of Theorem usgr1e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uspgr1e.v . . 3 𝑉 = (Vtx‘𝐺)
2 uspgr1e.a . . 3 (𝜑𝐴𝑋)
3 uspgr1e.b . . 3 (𝜑𝐵𝑉)
4 uspgr1e.c . . 3 (𝜑𝐶𝑉)
5 uspgr1e.e . . 3 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
61, 2, 3, 4, 5uspgr1e 26719 . 2 (𝜑𝐺 ∈ USPGraph)
7 usgr1e.e . . . . 5 (𝜑𝐵𝐶)
8 hashprg 13560 . . . . . 6 ((𝐵𝑉𝐶𝑉) → (𝐵𝐶 ↔ (♯‘{𝐵, 𝐶}) = 2))
93, 4, 8syl2anc 576 . . . . 5 (𝜑 → (𝐵𝐶 ↔ (♯‘{𝐵, 𝐶}) = 2))
107, 9mpbid 224 . . . 4 (𝜑 → (♯‘{𝐵, 𝐶}) = 2)
11 prex 5183 . . . . 5 {𝐵, 𝐶} ∈ V
12 fveqeq2 6502 . . . . 5 (𝑥 = {𝐵, 𝐶} → ((♯‘𝑥) = 2 ↔ (♯‘{𝐵, 𝐶}) = 2))
1311, 12ralsn 4487 . . . 4 (∀𝑥 ∈ {{𝐵, 𝐶}} (♯‘𝑥) = 2 ↔ (♯‘{𝐵, 𝐶}) = 2)
1410, 13sylibr 226 . . 3 (𝜑 → ∀𝑥 ∈ {{𝐵, 𝐶}} (♯‘𝑥) = 2)
15 edgval 26527 . . . . . 6 (Edg‘𝐺) = ran (iEdg‘𝐺)
1615a1i 11 . . . . 5 (𝜑 → (Edg‘𝐺) = ran (iEdg‘𝐺))
175rneqd 5644 . . . . 5 (𝜑 → ran (iEdg‘𝐺) = ran {⟨𝐴, {𝐵, 𝐶}⟩})
18 rnsnopg 5911 . . . . . 6 (𝐴𝑋 → ran {⟨𝐴, {𝐵, 𝐶}⟩} = {{𝐵, 𝐶}})
192, 18syl 17 . . . . 5 (𝜑 → ran {⟨𝐴, {𝐵, 𝐶}⟩} = {{𝐵, 𝐶}})
2016, 17, 193eqtrd 2812 . . . 4 (𝜑 → (Edg‘𝐺) = {{𝐵, 𝐶}})
2120raleqdv 3349 . . 3 (𝜑 → (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 2 ↔ ∀𝑥 ∈ {{𝐵, 𝐶}} (♯‘𝑥) = 2))
2214, 21mpbird 249 . 2 (𝜑 → ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 2)
23 usgruspgrb 26659 . 2 (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 2))
246, 22, 23sylanbrc 575 1 (𝜑𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1507  wcel 2048  wne 2961  wral 3082  {csn 4435  {cpr 4437  cop 4441  ran crn 5401  cfv 6182  2c2 11488  chash 13498  Vtxcvtx 26474  iEdgciedg 26475  Edgcedg 26525  USPGraphcuspgr 26626  USGraphcusgr 26627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-oadd 7901  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-dju 9116  df-card 9154  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-n0 11701  df-xnn0 11773  df-z 11787  df-uz 12052  df-fz 12702  df-hash 13499  df-edg 26526  df-uspgr 26628  df-usgr 26629
This theorem is referenced by:  usgr1eop  26725  1egrvtxdg1  26984  1egrvtxdg0  26986
  Copyright terms: Public domain W3C validator