MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr1e Structured version   Visualization version   GIF version

Theorem usgr1e 27593
Description: A simple graph with one edge (with additional assumption that 𝐵𝐶 since otherwise the edge is a loop!). (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
uspgr1e.v 𝑉 = (Vtx‘𝐺)
uspgr1e.a (𝜑𝐴𝑋)
uspgr1e.b (𝜑𝐵𝑉)
uspgr1e.c (𝜑𝐶𝑉)
uspgr1e.e (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
usgr1e.e (𝜑𝐵𝐶)
Assertion
Ref Expression
usgr1e (𝜑𝐺 ∈ USGraph)

Proof of Theorem usgr1e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uspgr1e.v . . 3 𝑉 = (Vtx‘𝐺)
2 uspgr1e.a . . 3 (𝜑𝐴𝑋)
3 uspgr1e.b . . 3 (𝜑𝐵𝑉)
4 uspgr1e.c . . 3 (𝜑𝐶𝑉)
5 uspgr1e.e . . 3 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
61, 2, 3, 4, 5uspgr1e 27592 . 2 (𝜑𝐺 ∈ USPGraph)
7 usgr1e.e . . . . 5 (𝜑𝐵𝐶)
8 hashprg 14091 . . . . . 6 ((𝐵𝑉𝐶𝑉) → (𝐵𝐶 ↔ (♯‘{𝐵, 𝐶}) = 2))
93, 4, 8syl2anc 583 . . . . 5 (𝜑 → (𝐵𝐶 ↔ (♯‘{𝐵, 𝐶}) = 2))
107, 9mpbid 231 . . . 4 (𝜑 → (♯‘{𝐵, 𝐶}) = 2)
11 prex 5358 . . . . 5 {𝐵, 𝐶} ∈ V
12 fveqeq2 6777 . . . . 5 (𝑥 = {𝐵, 𝐶} → ((♯‘𝑥) = 2 ↔ (♯‘{𝐵, 𝐶}) = 2))
1311, 12ralsn 4622 . . . 4 (∀𝑥 ∈ {{𝐵, 𝐶}} (♯‘𝑥) = 2 ↔ (♯‘{𝐵, 𝐶}) = 2)
1410, 13sylibr 233 . . 3 (𝜑 → ∀𝑥 ∈ {{𝐵, 𝐶}} (♯‘𝑥) = 2)
15 edgval 27400 . . . . . 6 (Edg‘𝐺) = ran (iEdg‘𝐺)
1615a1i 11 . . . . 5 (𝜑 → (Edg‘𝐺) = ran (iEdg‘𝐺))
175rneqd 5844 . . . . 5 (𝜑 → ran (iEdg‘𝐺) = ran {⟨𝐴, {𝐵, 𝐶}⟩})
18 rnsnopg 6121 . . . . . 6 (𝐴𝑋 → ran {⟨𝐴, {𝐵, 𝐶}⟩} = {{𝐵, 𝐶}})
192, 18syl 17 . . . . 5 (𝜑 → ran {⟨𝐴, {𝐵, 𝐶}⟩} = {{𝐵, 𝐶}})
2016, 17, 193eqtrd 2783 . . . 4 (𝜑 → (Edg‘𝐺) = {{𝐵, 𝐶}})
2120raleqdv 3346 . . 3 (𝜑 → (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 2 ↔ ∀𝑥 ∈ {{𝐵, 𝐶}} (♯‘𝑥) = 2))
2214, 21mpbird 256 . 2 (𝜑 → ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 2)
23 usgruspgrb 27532 . 2 (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 2))
246, 22, 23sylanbrc 582 1 (𝜑𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2109  wne 2944  wral 3065  {csn 4566  {cpr 4568  cop 4572  ran crn 5589  cfv 6430  2c2 12011  chash 14025  Vtxcvtx 27347  iEdgciedg 27348  Edgcedg 27398  USPGraphcuspgr 27499  USGraphcusgr 27500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-oadd 8285  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-dju 9643  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-n0 12217  df-xnn0 12289  df-z 12303  df-uz 12565  df-fz 13222  df-hash 14026  df-edg 27399  df-uspgr 27501  df-usgr 27502
This theorem is referenced by:  usgr1eop  27598  1egrvtxdg1  27857  1egrvtxdg0  27859
  Copyright terms: Public domain W3C validator