MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr1e Structured version   Visualization version   GIF version

Theorem usgr1e 27612
Description: A simple graph with one edge (with additional assumption that 𝐵𝐶 since otherwise the edge is a loop!). (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
uspgr1e.v 𝑉 = (Vtx‘𝐺)
uspgr1e.a (𝜑𝐴𝑋)
uspgr1e.b (𝜑𝐵𝑉)
uspgr1e.c (𝜑𝐶𝑉)
uspgr1e.e (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
usgr1e.e (𝜑𝐵𝐶)
Assertion
Ref Expression
usgr1e (𝜑𝐺 ∈ USGraph)

Proof of Theorem usgr1e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uspgr1e.v . . 3 𝑉 = (Vtx‘𝐺)
2 uspgr1e.a . . 3 (𝜑𝐴𝑋)
3 uspgr1e.b . . 3 (𝜑𝐵𝑉)
4 uspgr1e.c . . 3 (𝜑𝐶𝑉)
5 uspgr1e.e . . 3 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
61, 2, 3, 4, 5uspgr1e 27611 . 2 (𝜑𝐺 ∈ USPGraph)
7 usgr1e.e . . . . 5 (𝜑𝐵𝐶)
8 hashprg 14110 . . . . . 6 ((𝐵𝑉𝐶𝑉) → (𝐵𝐶 ↔ (♯‘{𝐵, 𝐶}) = 2))
93, 4, 8syl2anc 584 . . . . 5 (𝜑 → (𝐵𝐶 ↔ (♯‘{𝐵, 𝐶}) = 2))
107, 9mpbid 231 . . . 4 (𝜑 → (♯‘{𝐵, 𝐶}) = 2)
11 prex 5355 . . . . 5 {𝐵, 𝐶} ∈ V
12 fveqeq2 6783 . . . . 5 (𝑥 = {𝐵, 𝐶} → ((♯‘𝑥) = 2 ↔ (♯‘{𝐵, 𝐶}) = 2))
1311, 12ralsn 4617 . . . 4 (∀𝑥 ∈ {{𝐵, 𝐶}} (♯‘𝑥) = 2 ↔ (♯‘{𝐵, 𝐶}) = 2)
1410, 13sylibr 233 . . 3 (𝜑 → ∀𝑥 ∈ {{𝐵, 𝐶}} (♯‘𝑥) = 2)
15 edgval 27419 . . . . . 6 (Edg‘𝐺) = ran (iEdg‘𝐺)
1615a1i 11 . . . . 5 (𝜑 → (Edg‘𝐺) = ran (iEdg‘𝐺))
175rneqd 5847 . . . . 5 (𝜑 → ran (iEdg‘𝐺) = ran {⟨𝐴, {𝐵, 𝐶}⟩})
18 rnsnopg 6124 . . . . . 6 (𝐴𝑋 → ran {⟨𝐴, {𝐵, 𝐶}⟩} = {{𝐵, 𝐶}})
192, 18syl 17 . . . . 5 (𝜑 → ran {⟨𝐴, {𝐵, 𝐶}⟩} = {{𝐵, 𝐶}})
2016, 17, 193eqtrd 2782 . . . 4 (𝜑 → (Edg‘𝐺) = {{𝐵, 𝐶}})
2120raleqdv 3348 . . 3 (𝜑 → (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 2 ↔ ∀𝑥 ∈ {{𝐵, 𝐶}} (♯‘𝑥) = 2))
2214, 21mpbird 256 . 2 (𝜑 → ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 2)
23 usgruspgrb 27551 . 2 (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 2))
246, 22, 23sylanbrc 583 1 (𝜑𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wne 2943  wral 3064  {csn 4561  {cpr 4563  cop 4567  ran crn 5590  cfv 6433  2c2 12028  chash 14044  Vtxcvtx 27366  iEdgciedg 27367  Edgcedg 27417  USPGraphcuspgr 27518  USGraphcusgr 27519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045  df-edg 27418  df-uspgr 27520  df-usgr 27521
This theorem is referenced by:  usgr1eop  27617  1egrvtxdg1  27876  1egrvtxdg0  27878
  Copyright terms: Public domain W3C validator