| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnsnf | Structured version Visualization version GIF version | ||
| Description: The range of a function whose domain is a singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| rnsnf.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| rnsnf.2 | ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) |
| Ref | Expression |
|---|---|
| rnsnf | ⊢ (𝜑 → ran 𝐹 = {(𝐹‘𝐴)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4618 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
| 2 | 1 | fveq2d 6880 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → (𝐹‘𝑥) = (𝐹‘𝐴)) |
| 3 | 2 | mpteq2ia 5216 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↦ (𝐹‘𝑥)) = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝐴)) |
| 4 | rnsnf.2 | . . . . 5 ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) | |
| 5 | 4 | feqmptd 6947 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝑥))) |
| 6 | rnsnf.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | fvexd 6891 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐴) ∈ V) | |
| 8 | fmptsn 7159 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ∈ V) → {〈𝐴, (𝐹‘𝐴)〉} = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝐴))) | |
| 9 | 6, 7, 8 | syl2anc 584 | . . . 4 ⊢ (𝜑 → {〈𝐴, (𝐹‘𝐴)〉} = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝐴))) |
| 10 | 3, 5, 9 | 3eqtr4a 2796 | . . 3 ⊢ (𝜑 → 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
| 11 | 10 | rneqd 5918 | . 2 ⊢ (𝜑 → ran 𝐹 = ran {〈𝐴, (𝐹‘𝐴)〉}) |
| 12 | rnsnopg 6210 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, (𝐹‘𝐴)〉} = {(𝐹‘𝐴)}) | |
| 13 | 6, 12 | syl 17 | . 2 ⊢ (𝜑 → ran {〈𝐴, (𝐹‘𝐴)〉} = {(𝐹‘𝐴)}) |
| 14 | 11, 13 | eqtrd 2770 | 1 ⊢ (𝜑 → ran 𝐹 = {(𝐹‘𝐴)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 〈cop 4607 ↦ cmpt 5201 ran crn 5655 ⟶wf 6527 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 |
| This theorem is referenced by: fsneqrn 45235 unirnmapsn 45238 sge0sn 46408 |
| Copyright terms: Public domain | W3C validator |