![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnsnf | Structured version Visualization version GIF version |
Description: The range of a function whose domain is a singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
rnsnf.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
rnsnf.2 | ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) |
Ref | Expression |
---|---|
rnsnf | ⊢ (𝜑 → ran 𝐹 = {(𝐹‘𝐴)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4645 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
2 | 1 | fveq2d 6895 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → (𝐹‘𝑥) = (𝐹‘𝐴)) |
3 | 2 | mpteq2ia 5251 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↦ (𝐹‘𝑥)) = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝐴)) |
4 | rnsnf.2 | . . . . 5 ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) | |
5 | 4 | feqmptd 6960 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝑥))) |
6 | rnsnf.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
7 | fvexd 6906 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐴) ∈ V) | |
8 | fmptsn 7167 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ∈ V) → {⟨𝐴, (𝐹‘𝐴)⟩} = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝐴))) | |
9 | 6, 7, 8 | syl2anc 583 | . . . 4 ⊢ (𝜑 → {⟨𝐴, (𝐹‘𝐴)⟩} = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝐴))) |
10 | 3, 5, 9 | 3eqtr4a 2797 | . . 3 ⊢ (𝜑 → 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩}) |
11 | 10 | rneqd 5937 | . 2 ⊢ (𝜑 → ran 𝐹 = ran {⟨𝐴, (𝐹‘𝐴)⟩}) |
12 | rnsnopg 6220 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran {⟨𝐴, (𝐹‘𝐴)⟩} = {(𝐹‘𝐴)}) | |
13 | 6, 12 | syl 17 | . 2 ⊢ (𝜑 → ran {⟨𝐴, (𝐹‘𝐴)⟩} = {(𝐹‘𝐴)}) |
14 | 11, 13 | eqtrd 2771 | 1 ⊢ (𝜑 → ran 𝐹 = {(𝐹‘𝐴)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 {csn 4628 ⟨cop 4634 ↦ cmpt 5231 ran crn 5677 ⟶wf 6539 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 |
This theorem is referenced by: fsneqrn 44369 unirnmapsn 44372 sge0sn 45554 |
Copyright terms: Public domain | W3C validator |