Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnsnf | Structured version Visualization version GIF version |
Description: The range of a function whose domain is a singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
rnsnf.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
rnsnf.2 | ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) |
Ref | Expression |
---|---|
rnsnf | ⊢ (𝜑 → ran 𝐹 = {(𝐹‘𝐴)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4575 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
2 | 1 | fveq2d 6760 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → (𝐹‘𝑥) = (𝐹‘𝐴)) |
3 | 2 | mpteq2ia 5173 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↦ (𝐹‘𝑥)) = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝐴)) |
4 | rnsnf.2 | . . . . 5 ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) | |
5 | 4 | feqmptd 6819 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝑥))) |
6 | rnsnf.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
7 | fvexd 6771 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐴) ∈ V) | |
8 | fmptsn 7021 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ∈ V) → {〈𝐴, (𝐹‘𝐴)〉} = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝐴))) | |
9 | 6, 7, 8 | syl2anc 583 | . . . 4 ⊢ (𝜑 → {〈𝐴, (𝐹‘𝐴)〉} = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝐴))) |
10 | 3, 5, 9 | 3eqtr4a 2805 | . . 3 ⊢ (𝜑 → 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
11 | 10 | rneqd 5836 | . 2 ⊢ (𝜑 → ran 𝐹 = ran {〈𝐴, (𝐹‘𝐴)〉}) |
12 | rnsnopg 6113 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, (𝐹‘𝐴)〉} = {(𝐹‘𝐴)}) | |
13 | 6, 12 | syl 17 | . 2 ⊢ (𝜑 → ran {〈𝐴, (𝐹‘𝐴)〉} = {(𝐹‘𝐴)}) |
14 | 11, 13 | eqtrd 2778 | 1 ⊢ (𝜑 → ran 𝐹 = {(𝐹‘𝐴)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 〈cop 4564 ↦ cmpt 5153 ran crn 5581 ⟶wf 6414 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: fsneqrn 42640 unirnmapsn 42643 sge0sn 43807 |
Copyright terms: Public domain | W3C validator |