| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnsnf | Structured version Visualization version GIF version | ||
| Description: The range of a function whose domain is a singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| rnsnf.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| rnsnf.2 | ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) |
| Ref | Expression |
|---|---|
| rnsnf | ⊢ (𝜑 → ran 𝐹 = {(𝐹‘𝐴)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4594 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
| 2 | 1 | fveq2d 6835 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → (𝐹‘𝑥) = (𝐹‘𝐴)) |
| 3 | 2 | mpteq2ia 5190 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↦ (𝐹‘𝑥)) = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝐴)) |
| 4 | rnsnf.2 | . . . . 5 ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) | |
| 5 | 4 | feqmptd 6899 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝑥))) |
| 6 | rnsnf.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | fvexd 6846 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐴) ∈ V) | |
| 8 | fmptsn 7110 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ∈ V) → {〈𝐴, (𝐹‘𝐴)〉} = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝐴))) | |
| 9 | 6, 7, 8 | syl2anc 584 | . . . 4 ⊢ (𝜑 → {〈𝐴, (𝐹‘𝐴)〉} = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝐴))) |
| 10 | 3, 5, 9 | 3eqtr4a 2794 | . . 3 ⊢ (𝜑 → 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
| 11 | 10 | rneqd 5885 | . 2 ⊢ (𝜑 → ran 𝐹 = ran {〈𝐴, (𝐹‘𝐴)〉}) |
| 12 | rnsnopg 6176 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, (𝐹‘𝐴)〉} = {(𝐹‘𝐴)}) | |
| 13 | 6, 12 | syl 17 | . 2 ⊢ (𝜑 → ran {〈𝐴, (𝐹‘𝐴)〉} = {(𝐹‘𝐴)}) |
| 14 | 11, 13 | eqtrd 2768 | 1 ⊢ (𝜑 → ran 𝐹 = {(𝐹‘𝐴)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3438 {csn 4577 〈cop 4583 ↦ cmpt 5176 ran crn 5622 ⟶wf 6485 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 |
| This theorem is referenced by: fsneqrn 45322 unirnmapsn 45325 sge0sn 46491 |
| Copyright terms: Public domain | W3C validator |