Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnsnf Structured version   Visualization version   GIF version

Theorem rnsnf 42680
Description: The range of a function whose domain is a singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
rnsnf.1 (𝜑𝐴𝑉)
rnsnf.2 (𝜑𝐹:{𝐴}⟶𝐵)
Assertion
Ref Expression
rnsnf (𝜑 → ran 𝐹 = {(𝐹𝐴)})

Proof of Theorem rnsnf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elsni 4579 . . . . . 6 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
21fveq2d 6771 . . . . 5 (𝑥 ∈ {𝐴} → (𝐹𝑥) = (𝐹𝐴))
32mpteq2ia 5177 . . . 4 (𝑥 ∈ {𝐴} ↦ (𝐹𝑥)) = (𝑥 ∈ {𝐴} ↦ (𝐹𝐴))
4 rnsnf.2 . . . . 5 (𝜑𝐹:{𝐴}⟶𝐵)
54feqmptd 6830 . . . 4 (𝜑𝐹 = (𝑥 ∈ {𝐴} ↦ (𝐹𝑥)))
6 rnsnf.1 . . . . 5 (𝜑𝐴𝑉)
7 fvexd 6782 . . . . 5 (𝜑 → (𝐹𝐴) ∈ V)
8 fmptsn 7032 . . . . 5 ((𝐴𝑉 ∧ (𝐹𝐴) ∈ V) → {⟨𝐴, (𝐹𝐴)⟩} = (𝑥 ∈ {𝐴} ↦ (𝐹𝐴)))
96, 7, 8syl2anc 584 . . . 4 (𝜑 → {⟨𝐴, (𝐹𝐴)⟩} = (𝑥 ∈ {𝐴} ↦ (𝐹𝐴)))
103, 5, 93eqtr4a 2804 . . 3 (𝜑𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
1110rneqd 5841 . 2 (𝜑 → ran 𝐹 = ran {⟨𝐴, (𝐹𝐴)⟩})
12 rnsnopg 6118 . . 3 (𝐴𝑉 → ran {⟨𝐴, (𝐹𝐴)⟩} = {(𝐹𝐴)})
136, 12syl 17 . 2 (𝜑 → ran {⟨𝐴, (𝐹𝐴)⟩} = {(𝐹𝐴)})
1411, 13eqtrd 2778 1 (𝜑 → ran 𝐹 = {(𝐹𝐴)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3430  {csn 4562  cop 4568  cmpt 5157  ran crn 5586  wf 6423  cfv 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pr 5351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435
This theorem is referenced by:  fsneqrn  42710  unirnmapsn  42713  sge0sn  43876
  Copyright terms: Public domain W3C validator