Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnsnf Structured version   Visualization version   GIF version

Theorem rnsnf 41451
Description: The range of a function whose domain is a singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
rnsnf.1 (𝜑𝐴𝑉)
rnsnf.2 (𝜑𝐹:{𝐴}⟶𝐵)
Assertion
Ref Expression
rnsnf (𝜑 → ran 𝐹 = {(𝐹𝐴)})

Proof of Theorem rnsnf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elsni 4586 . . . . . 6 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
21fveq2d 6676 . . . . 5 (𝑥 ∈ {𝐴} → (𝐹𝑥) = (𝐹𝐴))
32mpteq2ia 5159 . . . 4 (𝑥 ∈ {𝐴} ↦ (𝐹𝑥)) = (𝑥 ∈ {𝐴} ↦ (𝐹𝐴))
4 rnsnf.2 . . . . 5 (𝜑𝐹:{𝐴}⟶𝐵)
54feqmptd 6735 . . . 4 (𝜑𝐹 = (𝑥 ∈ {𝐴} ↦ (𝐹𝑥)))
6 rnsnf.1 . . . . 5 (𝜑𝐴𝑉)
7 fvexd 6687 . . . . 5 (𝜑 → (𝐹𝐴) ∈ V)
8 fmptsn 6931 . . . . 5 ((𝐴𝑉 ∧ (𝐹𝐴) ∈ V) → {⟨𝐴, (𝐹𝐴)⟩} = (𝑥 ∈ {𝐴} ↦ (𝐹𝐴)))
96, 7, 8syl2anc 586 . . . 4 (𝜑 → {⟨𝐴, (𝐹𝐴)⟩} = (𝑥 ∈ {𝐴} ↦ (𝐹𝐴)))
103, 5, 93eqtr4a 2884 . . 3 (𝜑𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
1110rneqd 5810 . 2 (𝜑 → ran 𝐹 = ran {⟨𝐴, (𝐹𝐴)⟩})
12 rnsnopg 6080 . . 3 (𝐴𝑉 → ran {⟨𝐴, (𝐹𝐴)⟩} = {(𝐹𝐴)})
136, 12syl 17 . 2 (𝜑 → ran {⟨𝐴, (𝐹𝐴)⟩} = {(𝐹𝐴)})
1411, 13eqtrd 2858 1 (𝜑 → ran 𝐹 = {(𝐹𝐴)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  Vcvv 3496  {csn 4569  cop 4575  cmpt 5148  ran crn 5558  wf 6353  cfv 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365
This theorem is referenced by:  fsneqrn  41481  unirnmapsn  41484  sge0sn  42668
  Copyright terms: Public domain W3C validator