![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnsnf | Structured version Visualization version GIF version |
Description: The range of a function whose domain is a singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
rnsnf.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
rnsnf.2 | ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) |
Ref | Expression |
---|---|
rnsnf | ⊢ (𝜑 → ran 𝐹 = {(𝐹‘𝐴)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4665 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
2 | 1 | fveq2d 6924 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → (𝐹‘𝑥) = (𝐹‘𝐴)) |
3 | 2 | mpteq2ia 5269 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↦ (𝐹‘𝑥)) = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝐴)) |
4 | rnsnf.2 | . . . . 5 ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) | |
5 | 4 | feqmptd 6990 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝑥))) |
6 | rnsnf.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
7 | fvexd 6935 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐴) ∈ V) | |
8 | fmptsn 7201 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ∈ V) → {〈𝐴, (𝐹‘𝐴)〉} = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝐴))) | |
9 | 6, 7, 8 | syl2anc 583 | . . . 4 ⊢ (𝜑 → {〈𝐴, (𝐹‘𝐴)〉} = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝐴))) |
10 | 3, 5, 9 | 3eqtr4a 2806 | . . 3 ⊢ (𝜑 → 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
11 | 10 | rneqd 5963 | . 2 ⊢ (𝜑 → ran 𝐹 = ran {〈𝐴, (𝐹‘𝐴)〉}) |
12 | rnsnopg 6252 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, (𝐹‘𝐴)〉} = {(𝐹‘𝐴)}) | |
13 | 6, 12 | syl 17 | . 2 ⊢ (𝜑 → ran {〈𝐴, (𝐹‘𝐴)〉} = {(𝐹‘𝐴)}) |
14 | 11, 13 | eqtrd 2780 | 1 ⊢ (𝜑 → ran 𝐹 = {(𝐹‘𝐴)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 〈cop 4654 ↦ cmpt 5249 ran crn 5701 ⟶wf 6569 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: fsneqrn 45118 unirnmapsn 45121 sge0sn 46300 |
Copyright terms: Public domain | W3C validator |