Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnsnf Structured version   Visualization version   GIF version

Theorem rnsnf 45208
Description: The range of a function whose domain is a singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
rnsnf.1 (𝜑𝐴𝑉)
rnsnf.2 (𝜑𝐹:{𝐴}⟶𝐵)
Assertion
Ref Expression
rnsnf (𝜑 → ran 𝐹 = {(𝐹𝐴)})

Proof of Theorem rnsnf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elsni 4618 . . . . . 6 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
21fveq2d 6880 . . . . 5 (𝑥 ∈ {𝐴} → (𝐹𝑥) = (𝐹𝐴))
32mpteq2ia 5216 . . . 4 (𝑥 ∈ {𝐴} ↦ (𝐹𝑥)) = (𝑥 ∈ {𝐴} ↦ (𝐹𝐴))
4 rnsnf.2 . . . . 5 (𝜑𝐹:{𝐴}⟶𝐵)
54feqmptd 6947 . . . 4 (𝜑𝐹 = (𝑥 ∈ {𝐴} ↦ (𝐹𝑥)))
6 rnsnf.1 . . . . 5 (𝜑𝐴𝑉)
7 fvexd 6891 . . . . 5 (𝜑 → (𝐹𝐴) ∈ V)
8 fmptsn 7159 . . . . 5 ((𝐴𝑉 ∧ (𝐹𝐴) ∈ V) → {⟨𝐴, (𝐹𝐴)⟩} = (𝑥 ∈ {𝐴} ↦ (𝐹𝐴)))
96, 7, 8syl2anc 584 . . . 4 (𝜑 → {⟨𝐴, (𝐹𝐴)⟩} = (𝑥 ∈ {𝐴} ↦ (𝐹𝐴)))
103, 5, 93eqtr4a 2796 . . 3 (𝜑𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
1110rneqd 5918 . 2 (𝜑 → ran 𝐹 = ran {⟨𝐴, (𝐹𝐴)⟩})
12 rnsnopg 6210 . . 3 (𝐴𝑉 → ran {⟨𝐴, (𝐹𝐴)⟩} = {(𝐹𝐴)})
136, 12syl 17 . 2 (𝜑 → ran {⟨𝐴, (𝐹𝐴)⟩} = {(𝐹𝐴)})
1411, 13eqtrd 2770 1 (𝜑 → ran 𝐹 = {(𝐹𝐴)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  {csn 4601  cop 4607  cmpt 5201  ran crn 5655  wf 6527  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539
This theorem is referenced by:  fsneqrn  45235  unirnmapsn  45238  sge0sn  46408
  Copyright terms: Public domain W3C validator