| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnsnf | Structured version Visualization version GIF version | ||
| Description: The range of a function whose domain is a singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| rnsnf.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| rnsnf.2 | ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) |
| Ref | Expression |
|---|---|
| rnsnf | ⊢ (𝜑 → ran 𝐹 = {(𝐹‘𝐴)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4591 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
| 2 | 1 | fveq2d 6821 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → (𝐹‘𝑥) = (𝐹‘𝐴)) |
| 3 | 2 | mpteq2ia 5184 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↦ (𝐹‘𝑥)) = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝐴)) |
| 4 | rnsnf.2 | . . . . 5 ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) | |
| 5 | 4 | feqmptd 6885 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝑥))) |
| 6 | rnsnf.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | fvexd 6832 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐴) ∈ V) | |
| 8 | fmptsn 7096 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ∈ V) → {〈𝐴, (𝐹‘𝐴)〉} = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝐴))) | |
| 9 | 6, 7, 8 | syl2anc 584 | . . . 4 ⊢ (𝜑 → {〈𝐴, (𝐹‘𝐴)〉} = (𝑥 ∈ {𝐴} ↦ (𝐹‘𝐴))) |
| 10 | 3, 5, 9 | 3eqtr4a 2791 | . . 3 ⊢ (𝜑 → 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
| 11 | 10 | rneqd 5875 | . 2 ⊢ (𝜑 → ran 𝐹 = ran {〈𝐴, (𝐹‘𝐴)〉}) |
| 12 | rnsnopg 6165 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, (𝐹‘𝐴)〉} = {(𝐹‘𝐴)}) | |
| 13 | 6, 12 | syl 17 | . 2 ⊢ (𝜑 → ran {〈𝐴, (𝐹‘𝐴)〉} = {(𝐹‘𝐴)}) |
| 14 | 11, 13 | eqtrd 2765 | 1 ⊢ (𝜑 → ran 𝐹 = {(𝐹‘𝐴)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 Vcvv 3434 {csn 4574 〈cop 4580 ↦ cmpt 5170 ran crn 5615 ⟶wf 6473 ‘cfv 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 |
| This theorem is referenced by: fsneqrn 45227 unirnmapsn 45230 sge0sn 46396 |
| Copyright terms: Public domain | W3C validator |