| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgrloopedg | Structured version Visualization version GIF version | ||
| Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29228) is a singleton of a singleton. (Contributed by AV, 17-Dec-2020.) |
| Ref | Expression |
|---|---|
| uspgrloopvtx.g | ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 |
| Ref | Expression |
|---|---|
| uspgrloopedg | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘𝐺) = {{𝑁}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrloopvtx.g | . . . 4 ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 | |
| 2 | 1 | fveq2i 6879 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘〈𝑉, {〈𝐴, {𝑁}〉}〉) |
| 3 | snex 5406 | . . . . 5 ⊢ {〈𝐴, {𝑁}〉} ∈ V | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → {〈𝐴, {𝑁}〉} ∈ V) |
| 5 | edgopval 29030 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ {〈𝐴, {𝑁}〉} ∈ V) → (Edg‘〈𝑉, {〈𝐴, {𝑁}〉}〉) = ran {〈𝐴, {𝑁}〉}) | |
| 6 | 4, 5 | sylan2 593 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘〈𝑉, {〈𝐴, {𝑁}〉}〉) = ran {〈𝐴, {𝑁}〉}) |
| 7 | 2, 6 | eqtrid 2782 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘𝐺) = ran {〈𝐴, {𝑁}〉}) |
| 8 | rnsnopg 6210 | . . 3 ⊢ (𝐴 ∈ 𝑋 → ran {〈𝐴, {𝑁}〉} = {{𝑁}}) | |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → ran {〈𝐴, {𝑁}〉} = {{𝑁}}) |
| 10 | 7, 9 | eqtrd 2770 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘𝐺) = {{𝑁}}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 〈cop 4607 ran crn 5655 ‘cfv 6531 Edgcedg 29026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-2nd 7989 df-iedg 28978 df-edg 29027 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |