![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgrloopedg | Structured version Visualization version GIF version |
Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29101) is a singleton of a singleton. (Contributed by AV, 17-Dec-2020.) |
Ref | Expression |
---|---|
uspgrloopvtx.g | ⊢ 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩ |
Ref | Expression |
---|---|
uspgrloopedg | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘𝐺) = {{𝑁}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrloopvtx.g | . . . 4 ⊢ 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩ | |
2 | 1 | fveq2i 6893 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) |
3 | snex 5428 | . . . . 5 ⊢ {⟨𝐴, {𝑁}⟩} ∈ V | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → {⟨𝐴, {𝑁}⟩} ∈ V) |
5 | edgopval 28903 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ {⟨𝐴, {𝑁}⟩} ∈ V) → (Edg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = ran {⟨𝐴, {𝑁}⟩}) | |
6 | 4, 5 | sylan2 591 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = ran {⟨𝐴, {𝑁}⟩}) |
7 | 2, 6 | eqtrid 2777 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘𝐺) = ran {⟨𝐴, {𝑁}⟩}) |
8 | rnsnopg 6221 | . . 3 ⊢ (𝐴 ∈ 𝑋 → ran {⟨𝐴, {𝑁}⟩} = {{𝑁}}) | |
9 | 8 | adantl 480 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → ran {⟨𝐴, {𝑁}⟩} = {{𝑁}}) |
10 | 7, 9 | eqtrd 2765 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘𝐺) = {{𝑁}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3463 {csn 4625 ⟨cop 4631 ran crn 5674 ‘cfv 6543 Edgcedg 28899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-iota 6495 df-fun 6545 df-fv 6551 df-2nd 7988 df-iedg 28851 df-edg 28900 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |