Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uspgrloopedg | Structured version Visualization version GIF version |
Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 27616) is a singleton of a singleton. (Contributed by AV, 17-Dec-2020.) |
Ref | Expression |
---|---|
uspgrloopvtx.g | ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 |
Ref | Expression |
---|---|
uspgrloopedg | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘𝐺) = {{𝑁}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrloopvtx.g | . . . 4 ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 | |
2 | 1 | fveq2i 6777 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘〈𝑉, {〈𝐴, {𝑁}〉}〉) |
3 | snex 5354 | . . . . 5 ⊢ {〈𝐴, {𝑁}〉} ∈ V | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → {〈𝐴, {𝑁}〉} ∈ V) |
5 | edgopval 27421 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ {〈𝐴, {𝑁}〉} ∈ V) → (Edg‘〈𝑉, {〈𝐴, {𝑁}〉}〉) = ran {〈𝐴, {𝑁}〉}) | |
6 | 4, 5 | sylan2 593 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘〈𝑉, {〈𝐴, {𝑁}〉}〉) = ran {〈𝐴, {𝑁}〉}) |
7 | 2, 6 | eqtrid 2790 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘𝐺) = ran {〈𝐴, {𝑁}〉}) |
8 | rnsnopg 6124 | . . 3 ⊢ (𝐴 ∈ 𝑋 → ran {〈𝐴, {𝑁}〉} = {{𝑁}}) | |
9 | 8 | adantl 482 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → ran {〈𝐴, {𝑁}〉} = {{𝑁}}) |
10 | 7, 9 | eqtrd 2778 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘𝐺) = {{𝑁}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 〈cop 4567 ran crn 5590 ‘cfv 6433 Edgcedg 27417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-2nd 7832 df-iedg 27369 df-edg 27418 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |