![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgrloopedg | Structured version Visualization version GIF version |
Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29284) is a singleton of a singleton. (Contributed by AV, 17-Dec-2020.) |
Ref | Expression |
---|---|
uspgrloopvtx.g | ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 |
Ref | Expression |
---|---|
uspgrloopedg | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘𝐺) = {{𝑁}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrloopvtx.g | . . . 4 ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 | |
2 | 1 | fveq2i 6923 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘〈𝑉, {〈𝐴, {𝑁}〉}〉) |
3 | snex 5451 | . . . . 5 ⊢ {〈𝐴, {𝑁}〉} ∈ V | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → {〈𝐴, {𝑁}〉} ∈ V) |
5 | edgopval 29086 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ {〈𝐴, {𝑁}〉} ∈ V) → (Edg‘〈𝑉, {〈𝐴, {𝑁}〉}〉) = ran {〈𝐴, {𝑁}〉}) | |
6 | 4, 5 | sylan2 592 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘〈𝑉, {〈𝐴, {𝑁}〉}〉) = ran {〈𝐴, {𝑁}〉}) |
7 | 2, 6 | eqtrid 2792 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘𝐺) = ran {〈𝐴, {𝑁}〉}) |
8 | rnsnopg 6252 | . . 3 ⊢ (𝐴 ∈ 𝑋 → ran {〈𝐴, {𝑁}〉} = {{𝑁}}) | |
9 | 8 | adantl 481 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → ran {〈𝐴, {𝑁}〉} = {{𝑁}}) |
10 | 7, 9 | eqtrd 2780 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘𝐺) = {{𝑁}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 〈cop 4654 ran crn 5701 ‘cfv 6573 Edgcedg 29082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-2nd 8031 df-iedg 29034 df-edg 29083 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |