MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrloopedg Structured version   Visualization version   GIF version

Theorem uspgrloopedg 29554
Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29284) is a singleton of a singleton. (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
uspgrloopvtx.g 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
Assertion
Ref Expression
uspgrloopedg ((𝑉𝑊𝐴𝑋) → (Edg‘𝐺) = {{𝑁}})

Proof of Theorem uspgrloopedg
StepHypRef Expression
1 uspgrloopvtx.g . . . 4 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
21fveq2i 6923 . . 3 (Edg‘𝐺) = (Edg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩)
3 snex 5451 . . . . 5 {⟨𝐴, {𝑁}⟩} ∈ V
43a1i 11 . . . 4 (𝐴𝑋 → {⟨𝐴, {𝑁}⟩} ∈ V)
5 edgopval 29086 . . . 4 ((𝑉𝑊 ∧ {⟨𝐴, {𝑁}⟩} ∈ V) → (Edg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = ran {⟨𝐴, {𝑁}⟩})
64, 5sylan2 592 . . 3 ((𝑉𝑊𝐴𝑋) → (Edg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = ran {⟨𝐴, {𝑁}⟩})
72, 6eqtrid 2792 . 2 ((𝑉𝑊𝐴𝑋) → (Edg‘𝐺) = ran {⟨𝐴, {𝑁}⟩})
8 rnsnopg 6252 . . 3 (𝐴𝑋 → ran {⟨𝐴, {𝑁}⟩} = {{𝑁}})
98adantl 481 . 2 ((𝑉𝑊𝐴𝑋) → ran {⟨𝐴, {𝑁}⟩} = {{𝑁}})
107, 9eqtrd 2780 1 ((𝑉𝑊𝐴𝑋) → (Edg‘𝐺) = {{𝑁}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648  cop 4654  ran crn 5701  cfv 6573  Edgcedg 29082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-2nd 8031  df-iedg 29034  df-edg 29083
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator