MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrloopedg Structured version   Visualization version   GIF version

Theorem uspgrloopedg 29497
Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29227) is a singleton of a singleton. (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
uspgrloopvtx.g 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
Assertion
Ref Expression
uspgrloopedg ((𝑉𝑊𝐴𝑋) → (Edg‘𝐺) = {{𝑁}})

Proof of Theorem uspgrloopedg
StepHypRef Expression
1 uspgrloopvtx.g . . . 4 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
21fveq2i 6825 . . 3 (Edg‘𝐺) = (Edg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩)
3 snex 5372 . . . . 5 {⟨𝐴, {𝑁}⟩} ∈ V
43a1i 11 . . . 4 (𝐴𝑋 → {⟨𝐴, {𝑁}⟩} ∈ V)
5 edgopval 29029 . . . 4 ((𝑉𝑊 ∧ {⟨𝐴, {𝑁}⟩} ∈ V) → (Edg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = ran {⟨𝐴, {𝑁}⟩})
64, 5sylan2 593 . . 3 ((𝑉𝑊𝐴𝑋) → (Edg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = ran {⟨𝐴, {𝑁}⟩})
72, 6eqtrid 2778 . 2 ((𝑉𝑊𝐴𝑋) → (Edg‘𝐺) = ran {⟨𝐴, {𝑁}⟩})
8 rnsnopg 6168 . . 3 (𝐴𝑋 → ran {⟨𝐴, {𝑁}⟩} = {{𝑁}})
98adantl 481 . 2 ((𝑉𝑊𝐴𝑋) → ran {⟨𝐴, {𝑁}⟩} = {{𝑁}})
107, 9eqtrd 2766 1 ((𝑉𝑊𝐴𝑋) → (Edg‘𝐺) = {{𝑁}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4573  cop 4579  ran crn 5615  cfv 6481  Edgcedg 29025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fv 6489  df-2nd 7922  df-iedg 28977  df-edg 29026
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator