![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgrloopedg | Structured version Visualization version GIF version |
Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 28495) is a singleton of a singleton. (Contributed by AV, 17-Dec-2020.) |
Ref | Expression |
---|---|
uspgrloopvtx.g | ⊢ 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩ |
Ref | Expression |
---|---|
uspgrloopedg | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘𝐺) = {{𝑁}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrloopvtx.g | . . . 4 ⊢ 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩ | |
2 | 1 | fveq2i 6891 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) |
3 | snex 5430 | . . . . 5 ⊢ {⟨𝐴, {𝑁}⟩} ∈ V | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → {⟨𝐴, {𝑁}⟩} ∈ V) |
5 | edgopval 28300 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ {⟨𝐴, {𝑁}⟩} ∈ V) → (Edg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = ran {⟨𝐴, {𝑁}⟩}) | |
6 | 4, 5 | sylan2 593 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = ran {⟨𝐴, {𝑁}⟩}) |
7 | 2, 6 | eqtrid 2784 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘𝐺) = ran {⟨𝐴, {𝑁}⟩}) |
8 | rnsnopg 6217 | . . 3 ⊢ (𝐴 ∈ 𝑋 → ran {⟨𝐴, {𝑁}⟩} = {{𝑁}}) | |
9 | 8 | adantl 482 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → ran {⟨𝐴, {𝑁}⟩} = {{𝑁}}) |
10 | 7, 9 | eqtrd 2772 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘𝐺) = {{𝑁}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4627 ⟨cop 4633 ran crn 5676 ‘cfv 6540 Edgcedg 28296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fv 6548 df-2nd 7972 df-iedg 28248 df-edg 28297 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |