Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexfrabdioph Structured version   Visualization version   GIF version

Theorem rexfrabdioph 42834
Description: Diophantine set builder for existential quantifier, explicit substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypothesis
Ref Expression
rexfrabdioph.1 𝑀 = (𝑁 + 1)
Assertion
Ref Expression
rexfrabdioph ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑢,𝑡,𝑣,𝑀   𝑡,𝑁,𝑢,𝑣   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑣,𝑢)

Proof of Theorem rexfrabdioph
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2894 . . 3 𝑢(ℕ0m (1...𝑁))
2 nfcv 2894 . . 3 𝑎(ℕ0m (1...𝑁))
3 nfv 1915 . . 3 𝑎𝑣 ∈ ℕ0 𝜑
4 nfcv 2894 . . . 4 𝑢0
5 nfsbc1v 3761 . . . 4 𝑢[𝑎 / 𝑢][𝑏 / 𝑣]𝜑
64, 5nfrexw 3280 . . 3 𝑢𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑
7 nfv 1915 . . . . 5 𝑏𝜑
8 nfsbc1v 3761 . . . . 5 𝑣[𝑏 / 𝑣]𝜑
9 sbceq1a 3752 . . . . 5 (𝑣 = 𝑏 → (𝜑[𝑏 / 𝑣]𝜑))
107, 8, 9cbvrexw 3275 . . . 4 (∃𝑣 ∈ ℕ0 𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣]𝜑)
11 sbceq1a 3752 . . . . 5 (𝑢 = 𝑎 → ([𝑏 / 𝑣]𝜑[𝑎 / 𝑢][𝑏 / 𝑣]𝜑))
1211rexbidv 3156 . . . 4 (𝑢 = 𝑎 → (∃𝑏 ∈ ℕ0 [𝑏 / 𝑣]𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑))
1310, 12bitrid 283 . . 3 (𝑢 = 𝑎 → (∃𝑣 ∈ ℕ0 𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑))
141, 2, 3, 6, 13cbvrabw 3430 . 2 {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑}
15 rexfrabdioph.1 . . 3 𝑀 = (𝑁 + 1)
16 dfsbcq 3743 . . . 4 (𝑏 = (𝑡𝑀) → ([𝑏 / 𝑣]𝜑[(𝑡𝑀) / 𝑣]𝜑))
1716sbcbidv 3797 . . 3 (𝑏 = (𝑡𝑀) → ([𝑎 / 𝑢][𝑏 / 𝑣]𝜑[𝑎 / 𝑢][(𝑡𝑀) / 𝑣]𝜑))
18 dfsbcq 3743 . . 3 (𝑎 = (𝑡 ↾ (1...𝑁)) → ([𝑎 / 𝑢][(𝑡𝑀) / 𝑣]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣]𝜑))
1915, 17, 18rexrabdioph 42833 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑} ∈ (Dioph‘𝑁))
2014, 19eqeltrid 2835 1 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  [wsbc 3741  cres 5618  cfv 6481  (class class class)co 7346  m cmap 8750  1c1 11007   + caddc 11009  0cn0 12381  ...cfz 13407  Diophcdioph 42794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238  df-mzpcl 42762  df-mzp 42763  df-dioph 42795
This theorem is referenced by:  2rexfrabdioph  42835  3rexfrabdioph  42836  7rexfrabdioph  42839  rmxdioph  43055  expdiophlem2  43061
  Copyright terms: Public domain W3C validator