Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexfrabdioph Structured version   Visualization version   GIF version

Theorem rexfrabdioph 42790
Description: Diophantine set builder for existential quantifier, explicit substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypothesis
Ref Expression
rexfrabdioph.1 𝑀 = (𝑁 + 1)
Assertion
Ref Expression
rexfrabdioph ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑢,𝑡,𝑣,𝑀   𝑡,𝑁,𝑢,𝑣   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑣,𝑢)

Proof of Theorem rexfrabdioph
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2892 . . 3 𝑢(ℕ0m (1...𝑁))
2 nfcv 2892 . . 3 𝑎(ℕ0m (1...𝑁))
3 nfv 1914 . . 3 𝑎𝑣 ∈ ℕ0 𝜑
4 nfcv 2892 . . . 4 𝑢0
5 nfsbc1v 3776 . . . 4 𝑢[𝑎 / 𝑢][𝑏 / 𝑣]𝜑
64, 5nfrexw 3289 . . 3 𝑢𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑
7 nfv 1914 . . . . 5 𝑏𝜑
8 nfsbc1v 3776 . . . . 5 𝑣[𝑏 / 𝑣]𝜑
9 sbceq1a 3767 . . . . 5 (𝑣 = 𝑏 → (𝜑[𝑏 / 𝑣]𝜑))
107, 8, 9cbvrexw 3283 . . . 4 (∃𝑣 ∈ ℕ0 𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣]𝜑)
11 sbceq1a 3767 . . . . 5 (𝑢 = 𝑎 → ([𝑏 / 𝑣]𝜑[𝑎 / 𝑢][𝑏 / 𝑣]𝜑))
1211rexbidv 3158 . . . 4 (𝑢 = 𝑎 → (∃𝑏 ∈ ℕ0 [𝑏 / 𝑣]𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑))
1310, 12bitrid 283 . . 3 (𝑢 = 𝑎 → (∃𝑣 ∈ ℕ0 𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑))
141, 2, 3, 6, 13cbvrabw 3444 . 2 {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑}
15 rexfrabdioph.1 . . 3 𝑀 = (𝑁 + 1)
16 dfsbcq 3758 . . . 4 (𝑏 = (𝑡𝑀) → ([𝑏 / 𝑣]𝜑[(𝑡𝑀) / 𝑣]𝜑))
1716sbcbidv 3812 . . 3 (𝑏 = (𝑡𝑀) → ([𝑎 / 𝑢][𝑏 / 𝑣]𝜑[𝑎 / 𝑢][(𝑡𝑀) / 𝑣]𝜑))
18 dfsbcq 3758 . . 3 (𝑎 = (𝑡 ↾ (1...𝑁)) → ([𝑎 / 𝑢][(𝑡𝑀) / 𝑣]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣]𝜑))
1915, 17, 18rexrabdioph 42789 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑} ∈ (Dioph‘𝑁))
2014, 19eqeltrid 2833 1 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  [wsbc 3756  cres 5643  cfv 6514  (class class class)co 7390  m cmap 8802  1c1 11076   + caddc 11078  0cn0 12449  ...cfz 13475  Diophcdioph 42750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303  df-mzpcl 42718  df-mzp 42719  df-dioph 42751
This theorem is referenced by:  2rexfrabdioph  42791  3rexfrabdioph  42792  7rexfrabdioph  42795  rmxdioph  43012  expdiophlem2  43018
  Copyright terms: Public domain W3C validator