Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexfrabdioph | Structured version Visualization version GIF version |
Description: Diophantine set builder for existential quantifier, explicit substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
rexfrabdioph.1 | ⊢ 𝑀 = (𝑁 + 1) |
Ref | Expression |
---|---|
rexfrabdioph | ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑢(ℕ0 ↑m (1...𝑁)) | |
2 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑎(ℕ0 ↑m (1...𝑁)) | |
3 | nfv 1916 | . . 3 ⊢ Ⅎ𝑎∃𝑣 ∈ ℕ0 𝜑 | |
4 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑢ℕ0 | |
5 | nfsbc1v 3747 | . . . 4 ⊢ Ⅎ𝑢[𝑎 / 𝑢][𝑏 / 𝑣]𝜑 | |
6 | 4, 5 | nfrexw 3292 | . . 3 ⊢ Ⅎ𝑢∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑 |
7 | nfv 1916 | . . . . 5 ⊢ Ⅎ𝑏𝜑 | |
8 | nfsbc1v 3747 | . . . . 5 ⊢ Ⅎ𝑣[𝑏 / 𝑣]𝜑 | |
9 | sbceq1a 3738 | . . . . 5 ⊢ (𝑣 = 𝑏 → (𝜑 ↔ [𝑏 / 𝑣]𝜑)) | |
10 | 7, 8, 9 | cbvrexw 3286 | . . . 4 ⊢ (∃𝑣 ∈ ℕ0 𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣]𝜑) |
11 | sbceq1a 3738 | . . . . 5 ⊢ (𝑢 = 𝑎 → ([𝑏 / 𝑣]𝜑 ↔ [𝑎 / 𝑢][𝑏 / 𝑣]𝜑)) | |
12 | 11 | rexbidv 3171 | . . . 4 ⊢ (𝑢 = 𝑎 → (∃𝑏 ∈ ℕ0 [𝑏 / 𝑣]𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑)) |
13 | 10, 12 | bitrid 282 | . . 3 ⊢ (𝑢 = 𝑎 → (∃𝑣 ∈ ℕ0 𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑)) |
14 | 1, 2, 3, 6, 13 | cbvrabw 3435 | . 2 ⊢ {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑} |
15 | rexfrabdioph.1 | . . 3 ⊢ 𝑀 = (𝑁 + 1) | |
16 | dfsbcq 3729 | . . . 4 ⊢ (𝑏 = (𝑡‘𝑀) → ([𝑏 / 𝑣]𝜑 ↔ [(𝑡‘𝑀) / 𝑣]𝜑)) | |
17 | 16 | sbcbidv 3786 | . . 3 ⊢ (𝑏 = (𝑡‘𝑀) → ([𝑎 / 𝑢][𝑏 / 𝑣]𝜑 ↔ [𝑎 / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑)) |
18 | dfsbcq 3729 | . . 3 ⊢ (𝑎 = (𝑡 ↾ (1...𝑁)) → ([𝑎 / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑)) | |
19 | 15, 17, 18 | rexrabdioph 40886 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑} ∈ (Dioph‘𝑁)) |
20 | 14, 19 | eqeltrid 2841 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 {crab 3403 [wsbc 3727 ↾ cres 5622 ‘cfv 6479 (class class class)co 7337 ↑m cmap 8686 1c1 10973 + caddc 10975 ℕ0cn0 12334 ...cfz 13340 Diophcdioph 40847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-oadd 8371 df-er 8569 df-map 8688 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-dju 9758 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-hash 14146 df-mzpcl 40815 df-mzp 40816 df-dioph 40848 |
This theorem is referenced by: 2rexfrabdioph 40888 3rexfrabdioph 40889 7rexfrabdioph 40892 rmxdioph 41109 expdiophlem2 41115 |
Copyright terms: Public domain | W3C validator |