| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexfrabdioph | Structured version Visualization version GIF version | ||
| Description: Diophantine set builder for existential quantifier, explicit substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| Ref | Expression |
|---|---|
| rexfrabdioph.1 | ⊢ 𝑀 = (𝑁 + 1) |
| Ref | Expression |
|---|---|
| rexfrabdioph | ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑢(ℕ0 ↑m (1...𝑁)) | |
| 2 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑎(ℕ0 ↑m (1...𝑁)) | |
| 3 | nfv 1914 | . . 3 ⊢ Ⅎ𝑎∃𝑣 ∈ ℕ0 𝜑 | |
| 4 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑢ℕ0 | |
| 5 | nfsbc1v 3770 | . . . 4 ⊢ Ⅎ𝑢[𝑎 / 𝑢][𝑏 / 𝑣]𝜑 | |
| 6 | 4, 5 | nfrexw 3284 | . . 3 ⊢ Ⅎ𝑢∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑 |
| 7 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑏𝜑 | |
| 8 | nfsbc1v 3770 | . . . . 5 ⊢ Ⅎ𝑣[𝑏 / 𝑣]𝜑 | |
| 9 | sbceq1a 3761 | . . . . 5 ⊢ (𝑣 = 𝑏 → (𝜑 ↔ [𝑏 / 𝑣]𝜑)) | |
| 10 | 7, 8, 9 | cbvrexw 3279 | . . . 4 ⊢ (∃𝑣 ∈ ℕ0 𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣]𝜑) |
| 11 | sbceq1a 3761 | . . . . 5 ⊢ (𝑢 = 𝑎 → ([𝑏 / 𝑣]𝜑 ↔ [𝑎 / 𝑢][𝑏 / 𝑣]𝜑)) | |
| 12 | 11 | rexbidv 3157 | . . . 4 ⊢ (𝑢 = 𝑎 → (∃𝑏 ∈ ℕ0 [𝑏 / 𝑣]𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑)) |
| 13 | 10, 12 | bitrid 283 | . . 3 ⊢ (𝑢 = 𝑎 → (∃𝑣 ∈ ℕ0 𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑)) |
| 14 | 1, 2, 3, 6, 13 | cbvrabw 3438 | . 2 ⊢ {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑} |
| 15 | rexfrabdioph.1 | . . 3 ⊢ 𝑀 = (𝑁 + 1) | |
| 16 | dfsbcq 3752 | . . . 4 ⊢ (𝑏 = (𝑡‘𝑀) → ([𝑏 / 𝑣]𝜑 ↔ [(𝑡‘𝑀) / 𝑣]𝜑)) | |
| 17 | 16 | sbcbidv 3806 | . . 3 ⊢ (𝑏 = (𝑡‘𝑀) → ([𝑎 / 𝑢][𝑏 / 𝑣]𝜑 ↔ [𝑎 / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑)) |
| 18 | dfsbcq 3752 | . . 3 ⊢ (𝑎 = (𝑡 ↾ (1...𝑁)) → ([𝑎 / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑)) | |
| 19 | 15, 17, 18 | rexrabdioph 42755 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑} ∈ (Dioph‘𝑁)) |
| 20 | 14, 19 | eqeltrid 2832 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3402 [wsbc 3750 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 1c1 11045 + caddc 11047 ℕ0cn0 12418 ...cfz 13444 Diophcdioph 42716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-hash 14272 df-mzpcl 42684 df-mzp 42685 df-dioph 42717 |
| This theorem is referenced by: 2rexfrabdioph 42757 3rexfrabdioph 42758 7rexfrabdioph 42761 rmxdioph 42978 expdiophlem2 42984 |
| Copyright terms: Public domain | W3C validator |