| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexfrabdioph | Structured version Visualization version GIF version | ||
| Description: Diophantine set builder for existential quantifier, explicit substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| Ref | Expression |
|---|---|
| rexfrabdioph.1 | ⊢ 𝑀 = (𝑁 + 1) |
| Ref | Expression |
|---|---|
| rexfrabdioph | ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2894 | . . 3 ⊢ Ⅎ𝑢(ℕ0 ↑m (1...𝑁)) | |
| 2 | nfcv 2894 | . . 3 ⊢ Ⅎ𝑎(ℕ0 ↑m (1...𝑁)) | |
| 3 | nfv 1915 | . . 3 ⊢ Ⅎ𝑎∃𝑣 ∈ ℕ0 𝜑 | |
| 4 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑢ℕ0 | |
| 5 | nfsbc1v 3761 | . . . 4 ⊢ Ⅎ𝑢[𝑎 / 𝑢][𝑏 / 𝑣]𝜑 | |
| 6 | 4, 5 | nfrexw 3280 | . . 3 ⊢ Ⅎ𝑢∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑 |
| 7 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑏𝜑 | |
| 8 | nfsbc1v 3761 | . . . . 5 ⊢ Ⅎ𝑣[𝑏 / 𝑣]𝜑 | |
| 9 | sbceq1a 3752 | . . . . 5 ⊢ (𝑣 = 𝑏 → (𝜑 ↔ [𝑏 / 𝑣]𝜑)) | |
| 10 | 7, 8, 9 | cbvrexw 3275 | . . . 4 ⊢ (∃𝑣 ∈ ℕ0 𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣]𝜑) |
| 11 | sbceq1a 3752 | . . . . 5 ⊢ (𝑢 = 𝑎 → ([𝑏 / 𝑣]𝜑 ↔ [𝑎 / 𝑢][𝑏 / 𝑣]𝜑)) | |
| 12 | 11 | rexbidv 3156 | . . . 4 ⊢ (𝑢 = 𝑎 → (∃𝑏 ∈ ℕ0 [𝑏 / 𝑣]𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑)) |
| 13 | 10, 12 | bitrid 283 | . . 3 ⊢ (𝑢 = 𝑎 → (∃𝑣 ∈ ℕ0 𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑)) |
| 14 | 1, 2, 3, 6, 13 | cbvrabw 3430 | . 2 ⊢ {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑} |
| 15 | rexfrabdioph.1 | . . 3 ⊢ 𝑀 = (𝑁 + 1) | |
| 16 | dfsbcq 3743 | . . . 4 ⊢ (𝑏 = (𝑡‘𝑀) → ([𝑏 / 𝑣]𝜑 ↔ [(𝑡‘𝑀) / 𝑣]𝜑)) | |
| 17 | 16 | sbcbidv 3797 | . . 3 ⊢ (𝑏 = (𝑡‘𝑀) → ([𝑎 / 𝑢][𝑏 / 𝑣]𝜑 ↔ [𝑎 / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑)) |
| 18 | dfsbcq 3743 | . . 3 ⊢ (𝑎 = (𝑡 ↾ (1...𝑁)) → ([𝑎 / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑)) | |
| 19 | 15, 17, 18 | rexrabdioph 42833 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑} ∈ (Dioph‘𝑁)) |
| 20 | 14, 19 | eqeltrid 2835 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 [wsbc 3741 ↾ cres 5618 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 1c1 11007 + caddc 11009 ℕ0cn0 12381 ...cfz 13407 Diophcdioph 42794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 df-mzpcl 42762 df-mzp 42763 df-dioph 42795 |
| This theorem is referenced by: 2rexfrabdioph 42835 3rexfrabdioph 42836 7rexfrabdioph 42839 rmxdioph 43055 expdiophlem2 43061 |
| Copyright terms: Public domain | W3C validator |