| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexfrabdioph | Structured version Visualization version GIF version | ||
| Description: Diophantine set builder for existential quantifier, explicit substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| Ref | Expression |
|---|---|
| rexfrabdioph.1 | ⊢ 𝑀 = (𝑁 + 1) |
| Ref | Expression |
|---|---|
| rexfrabdioph | ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2895 | . . 3 ⊢ Ⅎ𝑢(ℕ0 ↑m (1...𝑁)) | |
| 2 | nfcv 2895 | . . 3 ⊢ Ⅎ𝑎(ℕ0 ↑m (1...𝑁)) | |
| 3 | nfv 1915 | . . 3 ⊢ Ⅎ𝑎∃𝑣 ∈ ℕ0 𝜑 | |
| 4 | nfcv 2895 | . . . 4 ⊢ Ⅎ𝑢ℕ0 | |
| 5 | nfsbc1v 3757 | . . . 4 ⊢ Ⅎ𝑢[𝑎 / 𝑢][𝑏 / 𝑣]𝜑 | |
| 6 | 4, 5 | nfrexw 3281 | . . 3 ⊢ Ⅎ𝑢∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑 |
| 7 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑏𝜑 | |
| 8 | nfsbc1v 3757 | . . . . 5 ⊢ Ⅎ𝑣[𝑏 / 𝑣]𝜑 | |
| 9 | sbceq1a 3748 | . . . . 5 ⊢ (𝑣 = 𝑏 → (𝜑 ↔ [𝑏 / 𝑣]𝜑)) | |
| 10 | 7, 8, 9 | cbvrexw 3276 | . . . 4 ⊢ (∃𝑣 ∈ ℕ0 𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣]𝜑) |
| 11 | sbceq1a 3748 | . . . . 5 ⊢ (𝑢 = 𝑎 → ([𝑏 / 𝑣]𝜑 ↔ [𝑎 / 𝑢][𝑏 / 𝑣]𝜑)) | |
| 12 | 11 | rexbidv 3157 | . . . 4 ⊢ (𝑢 = 𝑎 → (∃𝑏 ∈ ℕ0 [𝑏 / 𝑣]𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑)) |
| 13 | 10, 12 | bitrid 283 | . . 3 ⊢ (𝑢 = 𝑎 → (∃𝑣 ∈ ℕ0 𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑)) |
| 14 | 1, 2, 3, 6, 13 | cbvrabw 3431 | . 2 ⊢ {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑} |
| 15 | rexfrabdioph.1 | . . 3 ⊢ 𝑀 = (𝑁 + 1) | |
| 16 | dfsbcq 3739 | . . . 4 ⊢ (𝑏 = (𝑡‘𝑀) → ([𝑏 / 𝑣]𝜑 ↔ [(𝑡‘𝑀) / 𝑣]𝜑)) | |
| 17 | 16 | sbcbidv 3793 | . . 3 ⊢ (𝑏 = (𝑡‘𝑀) → ([𝑎 / 𝑢][𝑏 / 𝑣]𝜑 ↔ [𝑎 / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑)) |
| 18 | dfsbcq 3739 | . . 3 ⊢ (𝑎 = (𝑡 ↾ (1...𝑁)) → ([𝑎 / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑)) | |
| 19 | 15, 17, 18 | rexrabdioph 42914 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑} ∈ (Dioph‘𝑁)) |
| 20 | 14, 19 | eqeltrid 2837 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 {crab 3396 [wsbc 3737 ↾ cres 5623 ‘cfv 6488 (class class class)co 7354 ↑m cmap 8758 1c1 11016 + caddc 11018 ℕ0cn0 12390 ...cfz 13411 Diophcdioph 42875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-oadd 8397 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-dju 9803 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-hash 14242 df-mzpcl 42843 df-mzp 42844 df-dioph 42876 |
| This theorem is referenced by: 2rexfrabdioph 42916 3rexfrabdioph 42917 7rexfrabdioph 42920 rmxdioph 43136 expdiophlem2 43142 |
| Copyright terms: Public domain | W3C validator |