Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexfrabdioph Structured version   Visualization version   GIF version

Theorem rexfrabdioph 39253
 Description: Diophantine set builder for existential quantifier, explicit substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypothesis
Ref Expression
rexfrabdioph.1 𝑀 = (𝑁 + 1)
Assertion
Ref Expression
rexfrabdioph ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑢,𝑡,𝑣,𝑀   𝑡,𝑁,𝑢,𝑣   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑣,𝑢)

Proof of Theorem rexfrabdioph
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2981 . . 3 𝑢(ℕ0m (1...𝑁))
2 nfcv 2981 . . 3 𝑎(ℕ0m (1...𝑁))
3 nfv 1908 . . 3 𝑎𝑣 ∈ ℕ0 𝜑
4 nfcv 2981 . . . 4 𝑢0
5 nfsbc1v 3795 . . . 4 𝑢[𝑎 / 𝑢][𝑏 / 𝑣]𝜑
64, 5nfrex 3313 . . 3 𝑢𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑
7 nfv 1908 . . . . 5 𝑏𝜑
8 nfsbc1v 3795 . . . . 5 𝑣[𝑏 / 𝑣]𝜑
9 sbceq1a 3786 . . . . 5 (𝑣 = 𝑏 → (𝜑[𝑏 / 𝑣]𝜑))
107, 8, 9cbvrex 3451 . . . 4 (∃𝑣 ∈ ℕ0 𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣]𝜑)
11 sbceq1a 3786 . . . . 5 (𝑢 = 𝑎 → ([𝑏 / 𝑣]𝜑[𝑎 / 𝑢][𝑏 / 𝑣]𝜑))
1211rexbidv 3301 . . . 4 (𝑢 = 𝑎 → (∃𝑏 ∈ ℕ0 [𝑏 / 𝑣]𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑))
1310, 12syl5bb 284 . . 3 (𝑢 = 𝑎 → (∃𝑣 ∈ ℕ0 𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑))
141, 2, 3, 6, 13cbvrab 3495 . 2 {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑}
15 rexfrabdioph.1 . . 3 𝑀 = (𝑁 + 1)
16 dfsbcq 3777 . . . 4 (𝑏 = (𝑡𝑀) → ([𝑏 / 𝑣]𝜑[(𝑡𝑀) / 𝑣]𝜑))
1716sbcbidv 3830 . . 3 (𝑏 = (𝑡𝑀) → ([𝑎 / 𝑢][𝑏 / 𝑣]𝜑[𝑎 / 𝑢][(𝑡𝑀) / 𝑣]𝜑))
18 dfsbcq 3777 . . 3 (𝑎 = (𝑡 ↾ (1...𝑁)) → ([𝑎 / 𝑢][(𝑡𝑀) / 𝑣]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣]𝜑))
1915, 17, 18rexrabdioph 39252 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑} ∈ (Dioph‘𝑁))
2014, 19eqeltrid 2921 1 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   = wceq 1530   ∈ wcel 2107  ∃wrex 3143  {crab 3146  [wsbc 3775   ↾ cres 5555  ‘cfv 6351  (class class class)co 7151   ↑m cmap 8399  1c1 10530   + caddc 10532  ℕ0cn0 11889  ...cfz 12885  Diophcdioph 39213 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-hash 13684  df-mzpcl 39181  df-mzp 39182  df-dioph 39214 This theorem is referenced by:  2rexfrabdioph  39254  3rexfrabdioph  39255  7rexfrabdioph  39258  rmxdioph  39474  expdiophlem2  39480
 Copyright terms: Public domain W3C validator