MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem7 Structured version   Visualization version   GIF version

Theorem sbthlem7 8668
Description: Lemma for sbth 8672. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlem7 ((Fun 𝑓 ∧ Fun 𝑔) → Fun 𝐻)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlem7
StepHypRef Expression
1 funres 6382 . . 3 (Fun 𝑓 → Fun (𝑓 𝐷))
2 funres 6382 . . 3 (Fun 𝑔 → Fun (𝑔 ↾ (𝐴 𝐷)))
3 dmres 5850 . . . . . . . . 9 dom (𝑓 𝐷) = ( 𝐷 ∩ dom 𝑓)
4 inss1 4135 . . . . . . . . 9 ( 𝐷 ∩ dom 𝑓) ⊆ 𝐷
53, 4eqsstri 3928 . . . . . . . 8 dom (𝑓 𝐷) ⊆ 𝐷
6 ssrin 4140 . . . . . . . 8 (dom (𝑓 𝐷) ⊆ 𝐷 → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ dom (𝑔 ↾ (𝐴 𝐷))))
75, 6ax-mp 5 . . . . . . 7 (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ dom (𝑔 ↾ (𝐴 𝐷)))
8 dmres 5850 . . . . . . . . 9 dom (𝑔 ↾ (𝐴 𝐷)) = ((𝐴 𝐷) ∩ dom 𝑔)
9 inss1 4135 . . . . . . . . 9 ((𝐴 𝐷) ∩ dom 𝑔) ⊆ (𝐴 𝐷)
108, 9eqsstri 3928 . . . . . . . 8 dom (𝑔 ↾ (𝐴 𝐷)) ⊆ (𝐴 𝐷)
11 sslin 4141 . . . . . . . 8 (dom (𝑔 ↾ (𝐴 𝐷)) ⊆ (𝐴 𝐷) → ( 𝐷 ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ (𝐴 𝐷)))
1210, 11ax-mp 5 . . . . . . 7 ( 𝐷 ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ (𝐴 𝐷))
137, 12sstri 3903 . . . . . 6 (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ (𝐴 𝐷))
14 disjdif 4371 . . . . . 6 ( 𝐷 ∩ (𝐴 𝐷)) = ∅
1513, 14sseqtri 3930 . . . . 5 (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ∅
16 ss0 4297 . . . . 5 ((dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ∅ → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅)
1715, 16ax-mp 5 . . . 4 (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅
18 funun 6386 . . . 4 (((Fun (𝑓 𝐷) ∧ Fun (𝑔 ↾ (𝐴 𝐷))) ∧ (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
1917, 18mpan2 690 . . 3 ((Fun (𝑓 𝐷) ∧ Fun (𝑔 ↾ (𝐴 𝐷))) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
201, 2, 19syl2an 598 . 2 ((Fun 𝑓 ∧ Fun 𝑔) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
21 sbthlem.3 . . 3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
2221funeqi 6361 . 2 (Fun 𝐻 ↔ Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
2320, 22sylibr 237 1 ((Fun 𝑓 ∧ Fun 𝑔) → Fun 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {cab 2735  Vcvv 3409  cdif 3857  cun 3858  cin 3859  wss 3860  c0 4227   cuni 4801  ccnv 5527  dom cdm 5528  cres 5530  cima 5531  Fun wfun 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-br 5037  df-opab 5099  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-res 5540  df-fun 6342
This theorem is referenced by:  sbthlem9  8670
  Copyright terms: Public domain W3C validator