MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem7 Structured version   Visualization version   GIF version

Theorem sbthlem7 9101
Description: Lemma for sbth 9105. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlem7 ((Fun 𝑓 ∧ Fun 𝑔) → Fun 𝐻)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlem7
StepHypRef Expression
1 funres 6577 . . 3 (Fun 𝑓 → Fun (𝑓 𝐷))
2 funres 6577 . . 3 (Fun 𝑔 → Fun (𝑔 ↾ (𝐴 𝐷)))
3 dmres 5999 . . . . . . . . 9 dom (𝑓 𝐷) = ( 𝐷 ∩ dom 𝑓)
4 inss1 4212 . . . . . . . . 9 ( 𝐷 ∩ dom 𝑓) ⊆ 𝐷
53, 4eqsstri 4005 . . . . . . . 8 dom (𝑓 𝐷) ⊆ 𝐷
6 ssrin 4217 . . . . . . . 8 (dom (𝑓 𝐷) ⊆ 𝐷 → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ dom (𝑔 ↾ (𝐴 𝐷))))
75, 6ax-mp 5 . . . . . . 7 (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ dom (𝑔 ↾ (𝐴 𝐷)))
8 dmres 5999 . . . . . . . . 9 dom (𝑔 ↾ (𝐴 𝐷)) = ((𝐴 𝐷) ∩ dom 𝑔)
9 inss1 4212 . . . . . . . . 9 ((𝐴 𝐷) ∩ dom 𝑔) ⊆ (𝐴 𝐷)
108, 9eqsstri 4005 . . . . . . . 8 dom (𝑔 ↾ (𝐴 𝐷)) ⊆ (𝐴 𝐷)
11 sslin 4218 . . . . . . . 8 (dom (𝑔 ↾ (𝐴 𝐷)) ⊆ (𝐴 𝐷) → ( 𝐷 ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ (𝐴 𝐷)))
1210, 11ax-mp 5 . . . . . . 7 ( 𝐷 ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ (𝐴 𝐷))
137, 12sstri 3968 . . . . . 6 (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ (𝐴 𝐷))
14 disjdif 4447 . . . . . 6 ( 𝐷 ∩ (𝐴 𝐷)) = ∅
1513, 14sseqtri 4007 . . . . 5 (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ∅
16 ss0 4377 . . . . 5 ((dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ∅ → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅)
1715, 16ax-mp 5 . . . 4 (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅
18 funun 6581 . . . 4 (((Fun (𝑓 𝐷) ∧ Fun (𝑔 ↾ (𝐴 𝐷))) ∧ (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
1917, 18mpan2 691 . . 3 ((Fun (𝑓 𝐷) ∧ Fun (𝑔 ↾ (𝐴 𝐷))) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
201, 2, 19syl2an 596 . 2 ((Fun 𝑓 ∧ Fun 𝑔) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
21 sbthlem.3 . . 3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
2221funeqi 6556 . 2 (Fun 𝐻 ↔ Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
2320, 22sylibr 234 1 ((Fun 𝑓 ∧ Fun 𝑔) → Fun 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cab 2713  Vcvv 3459  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308   cuni 4883  ccnv 5653  dom cdm 5654  cres 5656  cima 5657  Fun wfun 6524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-res 5666  df-fun 6532
This theorem is referenced by:  sbthlem9  9103
  Copyright terms: Public domain W3C validator