![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbthlem6 | Structured version Visualization version GIF version |
Description: Lemma for sbth 8323. (Contributed by NM, 27-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | ⊢ 𝐴 ∈ V |
sbthlem.2 | ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} |
sbthlem.3 | ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
Ref | Expression |
---|---|
sbthlem6 | ⊢ ((ran 𝑓 ⊆ 𝐵 ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → ran 𝐻 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5326 | . . . . 5 ⊢ (◡𝑔 “ (𝐴 ∖ ∪ 𝐷)) = ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)) | |
2 | sbthlem.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
3 | sbthlem.2 | . . . . . 6 ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} | |
4 | 2, 3 | sbthlem4 8316 | . . . . 5 ⊢ (((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → (◡𝑔 “ (𝐴 ∖ ∪ 𝐷)) = (𝐵 ∖ (𝑓 “ ∪ 𝐷))) |
5 | 1, 4 | syl5reqr 2849 | . . . 4 ⊢ (((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → (𝐵 ∖ (𝑓 “ ∪ 𝐷)) = ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
6 | 5 | uneq2d 3966 | . . 3 ⊢ (((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = ((𝑓 “ ∪ 𝐷) ∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)))) |
7 | rnun 5759 | . . . 4 ⊢ ran ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) = (ran (𝑓 ↾ ∪ 𝐷) ∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | |
8 | sbthlem.3 | . . . . 5 ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | |
9 | 8 | rneqi 5556 | . . . 4 ⊢ ran 𝐻 = ran ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
10 | df-ima 5326 | . . . . 5 ⊢ (𝑓 “ ∪ 𝐷) = ran (𝑓 ↾ ∪ 𝐷) | |
11 | 10 | uneq1i 3962 | . . . 4 ⊢ ((𝑓 “ ∪ 𝐷) ∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) = (ran (𝑓 ↾ ∪ 𝐷) ∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
12 | 7, 9, 11 | 3eqtr4i 2832 | . . 3 ⊢ ran 𝐻 = ((𝑓 “ ∪ 𝐷) ∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
13 | 6, 12 | syl6reqr 2853 | . 2 ⊢ (((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → ran 𝐻 = ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |
14 | imassrn 5695 | . . . 4 ⊢ (𝑓 “ ∪ 𝐷) ⊆ ran 𝑓 | |
15 | sstr2 3806 | . . . 4 ⊢ ((𝑓 “ ∪ 𝐷) ⊆ ran 𝑓 → (ran 𝑓 ⊆ 𝐵 → (𝑓 “ ∪ 𝐷) ⊆ 𝐵)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ (ran 𝑓 ⊆ 𝐵 → (𝑓 “ ∪ 𝐷) ⊆ 𝐵) |
17 | undif 4244 | . . 3 ⊢ ((𝑓 “ ∪ 𝐷) ⊆ 𝐵 ↔ ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = 𝐵) | |
18 | 16, 17 | sylib 210 | . 2 ⊢ (ran 𝑓 ⊆ 𝐵 → ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = 𝐵) |
19 | 13, 18 | sylan9eqr 2856 | 1 ⊢ ((ran 𝑓 ⊆ 𝐵 ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → ran 𝐻 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {cab 2786 Vcvv 3386 ∖ cdif 3767 ∪ cun 3768 ⊆ wss 3770 ∪ cuni 4629 ◡ccnv 5312 dom cdm 5313 ran crn 5314 ↾ cres 5315 “ cima 5316 Fun wfun 6096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-fun 6104 |
This theorem is referenced by: sbthlem9 8321 |
Copyright terms: Public domain | W3C validator |