MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem6 Structured version   Visualization version   GIF version

Theorem sbthlem6 8626
Description: Lemma for sbth 8631. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlem6 ((ran 𝑓𝐵 ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlem6
StepHypRef Expression
1 df-ima 5567 . . . . 5 (𝑔 “ (𝐴 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷))
2 sbthlem.1 . . . . . 6 𝐴 ∈ V
3 sbthlem.2 . . . . . 6 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
42, 3sbthlem4 8624 . . . . 5 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
51, 4syl5reqr 2876 . . . 4 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝐵 ∖ (𝑓 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷)))
65uneq2d 4143 . . 3 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) = ((𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷))))
7 rnun 6003 . . . 4 ran ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) = (ran (𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷)))
8 sbthlem.3 . . . . 5 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
98rneqi 5806 . . . 4 ran 𝐻 = ran ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
10 df-ima 5567 . . . . 5 (𝑓 𝐷) = ran (𝑓 𝐷)
1110uneq1i 4139 . . . 4 ((𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷))) = (ran (𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷)))
127, 9, 113eqtr4i 2859 . . 3 ran 𝐻 = ((𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷)))
136, 12syl6reqr 2880 . 2 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → ran 𝐻 = ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))))
14 imassrn 5939 . . . 4 (𝑓 𝐷) ⊆ ran 𝑓
15 sstr2 3978 . . . 4 ((𝑓 𝐷) ⊆ ran 𝑓 → (ran 𝑓𝐵 → (𝑓 𝐷) ⊆ 𝐵))
1614, 15ax-mp 5 . . 3 (ran 𝑓𝐵 → (𝑓 𝐷) ⊆ 𝐵)
17 undif 4433 . . 3 ((𝑓 𝐷) ⊆ 𝐵 ↔ ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) = 𝐵)
1816, 17sylib 219 . 2 (ran 𝑓𝐵 → ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) = 𝐵)
1913, 18sylan9eqr 2883 1 ((ran 𝑓𝐵 ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  {cab 2804  Vcvv 3500  cdif 3937  cun 3938  wss 3940   cuni 4837  ccnv 5553  dom cdm 5554  ran crn 5555  cres 5556  cima 5557  Fun wfun 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pr 5326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-fun 6356
This theorem is referenced by:  sbthlem9  8629
  Copyright terms: Public domain W3C validator