Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbthlem6 | Structured version Visualization version GIF version |
Description: Lemma for sbth 8833. (Contributed by NM, 27-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | ⊢ 𝐴 ∈ V |
sbthlem.2 | ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} |
sbthlem.3 | ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
Ref | Expression |
---|---|
sbthlem6 | ⊢ ((ran 𝑓 ⊆ 𝐵 ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → ran 𝐻 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnun 6038 | . . . 4 ⊢ ran ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) = (ran (𝑓 ↾ ∪ 𝐷) ∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | |
2 | sbthlem.3 | . . . . 5 ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | |
3 | 2 | rneqi 5835 | . . . 4 ⊢ ran 𝐻 = ran ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
4 | df-ima 5593 | . . . . 5 ⊢ (𝑓 “ ∪ 𝐷) = ran (𝑓 ↾ ∪ 𝐷) | |
5 | 4 | uneq1i 4089 | . . . 4 ⊢ ((𝑓 “ ∪ 𝐷) ∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) = (ran (𝑓 ↾ ∪ 𝐷) ∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
6 | 1, 3, 5 | 3eqtr4i 2776 | . . 3 ⊢ ran 𝐻 = ((𝑓 “ ∪ 𝐷) ∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
7 | sbthlem.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
8 | sbthlem.2 | . . . . . 6 ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} | |
9 | 7, 8 | sbthlem4 8826 | . . . . 5 ⊢ (((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → (◡𝑔 “ (𝐴 ∖ ∪ 𝐷)) = (𝐵 ∖ (𝑓 “ ∪ 𝐷))) |
10 | df-ima 5593 | . . . . 5 ⊢ (◡𝑔 “ (𝐴 ∖ ∪ 𝐷)) = ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)) | |
11 | 9, 10 | eqtr3di 2794 | . . . 4 ⊢ (((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → (𝐵 ∖ (𝑓 “ ∪ 𝐷)) = ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
12 | 11 | uneq2d 4093 | . . 3 ⊢ (((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = ((𝑓 “ ∪ 𝐷) ∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)))) |
13 | 6, 12 | eqtr4id 2798 | . 2 ⊢ (((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → ran 𝐻 = ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |
14 | imassrn 5969 | . . . 4 ⊢ (𝑓 “ ∪ 𝐷) ⊆ ran 𝑓 | |
15 | sstr2 3924 | . . . 4 ⊢ ((𝑓 “ ∪ 𝐷) ⊆ ran 𝑓 → (ran 𝑓 ⊆ 𝐵 → (𝑓 “ ∪ 𝐷) ⊆ 𝐵)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ (ran 𝑓 ⊆ 𝐵 → (𝑓 “ ∪ 𝐷) ⊆ 𝐵) |
17 | undif 4412 | . . 3 ⊢ ((𝑓 “ ∪ 𝐷) ⊆ 𝐵 ↔ ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = 𝐵) | |
18 | 16, 17 | sylib 217 | . 2 ⊢ (ran 𝑓 ⊆ 𝐵 → ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = 𝐵) |
19 | 13, 18 | sylan9eqr 2801 | 1 ⊢ ((ran 𝑓 ⊆ 𝐵 ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → ran 𝐻 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 ⊆ wss 3883 ∪ cuni 4836 ◡ccnv 5579 dom cdm 5580 ran crn 5581 ↾ cres 5582 “ cima 5583 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 |
This theorem is referenced by: sbthlem9 8831 |
Copyright terms: Public domain | W3C validator |