![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbthlem6 | Structured version Visualization version GIF version |
Description: Lemma for sbth 9126. (Contributed by NM, 27-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | ⊢ 𝐴 ∈ V |
sbthlem.2 | ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} |
sbthlem.3 | ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
Ref | Expression |
---|---|
sbthlem6 | ⊢ ((ran 𝑓 ⊆ 𝐵 ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → ran 𝐻 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnun 6155 | . . . 4 ⊢ ran ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) = (ran (𝑓 ↾ ∪ 𝐷) ∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | |
2 | sbthlem.3 | . . . . 5 ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | |
3 | 2 | rneqi 5943 | . . . 4 ⊢ ran 𝐻 = ran ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
4 | df-ima 5695 | . . . . 5 ⊢ (𝑓 “ ∪ 𝐷) = ran (𝑓 ↾ ∪ 𝐷) | |
5 | 4 | uneq1i 4160 | . . . 4 ⊢ ((𝑓 “ ∪ 𝐷) ∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) = (ran (𝑓 ↾ ∪ 𝐷) ∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
6 | 1, 3, 5 | 3eqtr4i 2766 | . . 3 ⊢ ran 𝐻 = ((𝑓 “ ∪ 𝐷) ∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
7 | sbthlem.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
8 | sbthlem.2 | . . . . . 6 ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} | |
9 | 7, 8 | sbthlem4 9119 | . . . . 5 ⊢ (((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → (◡𝑔 “ (𝐴 ∖ ∪ 𝐷)) = (𝐵 ∖ (𝑓 “ ∪ 𝐷))) |
10 | df-ima 5695 | . . . . 5 ⊢ (◡𝑔 “ (𝐴 ∖ ∪ 𝐷)) = ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)) | |
11 | 9, 10 | eqtr3di 2783 | . . . 4 ⊢ (((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → (𝐵 ∖ (𝑓 “ ∪ 𝐷)) = ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
12 | 11 | uneq2d 4164 | . . 3 ⊢ (((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = ((𝑓 “ ∪ 𝐷) ∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)))) |
13 | 6, 12 | eqtr4id 2787 | . 2 ⊢ (((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → ran 𝐻 = ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |
14 | imassrn 6079 | . . . 4 ⊢ (𝑓 “ ∪ 𝐷) ⊆ ran 𝑓 | |
15 | sstr2 3989 | . . . 4 ⊢ ((𝑓 “ ∪ 𝐷) ⊆ ran 𝑓 → (ran 𝑓 ⊆ 𝐵 → (𝑓 “ ∪ 𝐷) ⊆ 𝐵)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ (ran 𝑓 ⊆ 𝐵 → (𝑓 “ ∪ 𝐷) ⊆ 𝐵) |
17 | undif 4485 | . . 3 ⊢ ((𝑓 “ ∪ 𝐷) ⊆ 𝐵 ↔ ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = 𝐵) | |
18 | 16, 17 | sylib 217 | . 2 ⊢ (ran 𝑓 ⊆ 𝐵 → ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = 𝐵) |
19 | 13, 18 | sylan9eqr 2790 | 1 ⊢ ((ran 𝑓 ⊆ 𝐵 ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → ran 𝐻 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2705 Vcvv 3473 ∖ cdif 3946 ∪ cun 3947 ⊆ wss 3949 ∪ cuni 4912 ◡ccnv 5681 dom cdm 5682 ran crn 5683 ↾ cres 5684 “ cima 5685 Fun wfun 6547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-fun 6555 |
This theorem is referenced by: sbthlem9 9124 |
Copyright terms: Public domain | W3C validator |