| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqeq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeq123d.1 | ⊢ (𝜑 → 𝑀 = 𝑁) |
| seqeq123d.2 | ⊢ (𝜑 → + = 𝑄) |
| seqeq123d.3 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| seqeq123d | ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeq123d.1 | . . 3 ⊢ (𝜑 → 𝑀 = 𝑁) | |
| 2 | 1 | seqeq1d 13972 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹)) |
| 3 | seqeq123d.2 | . . 3 ⊢ (𝜑 → + = 𝑄) | |
| 4 | 3 | seqeq2d 13973 | . 2 ⊢ (𝜑 → seq𝑁( + , 𝐹) = seq𝑁(𝑄, 𝐹)) |
| 5 | seqeq123d.3 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 6 | 5 | seqeq3d 13974 | . 2 ⊢ (𝜑 → seq𝑁(𝑄, 𝐹) = seq𝑁(𝑄, 𝐺)) |
| 7 | 2, 4, 6 | 3eqtrd 2768 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 seqcseq 13966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-xp 5644 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-iota 6464 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-seq 13967 |
| This theorem is referenced by: relexpsucnnr 14991 sseqval 34379 bj-finsumval0 37273 itcoval 48650 |
| Copyright terms: Public domain | W3C validator |