Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqeq123d Structured version   Visualization version   GIF version

Theorem seqeq123d 13380
 Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypotheses
Ref Expression
seqeq123d.1 (𝜑𝑀 = 𝑁)
seqeq123d.2 (𝜑+ = 𝑄)
seqeq123d.3 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
seqeq123d (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺))

Proof of Theorem seqeq123d
StepHypRef Expression
1 seqeq123d.1 . . 3 (𝜑𝑀 = 𝑁)
21seqeq1d 13377 . 2 (𝜑 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹))
3 seqeq123d.2 . . 3 (𝜑+ = 𝑄)
43seqeq2d 13378 . 2 (𝜑 → seq𝑁( + , 𝐹) = seq𝑁(𝑄, 𝐹))
5 seqeq123d.3 . . 3 (𝜑𝐹 = 𝐺)
65seqeq3d 13379 . 2 (𝜑 → seq𝑁(𝑄, 𝐹) = seq𝑁(𝑄, 𝐺))
72, 4, 63eqtrd 2863 1 (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538  seqcseq 13371 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rab 3142  df-v 3482  df-un 3924  df-in 3926  df-ss 3936  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-br 5054  df-opab 5116  df-mpt 5134  df-xp 5549  df-cnv 5551  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-iota 6303  df-fv 6352  df-ov 7149  df-oprab 7150  df-mpo 7151  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-seq 13372 This theorem is referenced by:  relexpsucnnr  14382  sseqval  31673  bj-finsumval0  34615  itcoval  44929
 Copyright terms: Public domain W3C validator