MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqeq123d Structured version   Visualization version   GIF version

Theorem seqeq123d 13982
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypotheses
Ref Expression
seqeq123d.1 (𝜑𝑀 = 𝑁)
seqeq123d.2 (𝜑+ = 𝑄)
seqeq123d.3 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
seqeq123d (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺))

Proof of Theorem seqeq123d
StepHypRef Expression
1 seqeq123d.1 . . 3 (𝜑𝑀 = 𝑁)
21seqeq1d 13979 . 2 (𝜑 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹))
3 seqeq123d.2 . . 3 (𝜑+ = 𝑄)
43seqeq2d 13980 . 2 (𝜑 → seq𝑁( + , 𝐹) = seq𝑁(𝑄, 𝐹))
5 seqeq123d.3 . . 3 (𝜑𝐹 = 𝐺)
65seqeq3d 13981 . 2 (𝜑 → seq𝑁(𝑄, 𝐹) = seq𝑁(𝑄, 𝐺))
72, 4, 63eqtrd 2769 1 (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  seqcseq 13973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-xp 5647  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-iota 6467  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seq 13974
This theorem is referenced by:  relexpsucnnr  14998  sseqval  34386  bj-finsumval0  37280  itcoval  48654
  Copyright terms: Public domain W3C validator