![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqeq123d | Structured version Visualization version GIF version |
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
Ref | Expression |
---|---|
seqeq123d.1 | ⊢ (𝜑 → 𝑀 = 𝑁) |
seqeq123d.2 | ⊢ (𝜑 → + = 𝑄) |
seqeq123d.3 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
seqeq123d | ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqeq123d.1 | . . 3 ⊢ (𝜑 → 𝑀 = 𝑁) | |
2 | 1 | seqeq1d 14045 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹)) |
3 | seqeq123d.2 | . . 3 ⊢ (𝜑 → + = 𝑄) | |
4 | 3 | seqeq2d 14046 | . 2 ⊢ (𝜑 → seq𝑁( + , 𝐹) = seq𝑁(𝑄, 𝐹)) |
5 | seqeq123d.3 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
6 | 5 | seqeq3d 14047 | . 2 ⊢ (𝜑 → seq𝑁(𝑄, 𝐹) = seq𝑁(𝑄, 𝐺)) |
7 | 2, 4, 6 | 3eqtrd 2779 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 seqcseq 14039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5695 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-iota 6516 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-seq 14040 |
This theorem is referenced by: relexpsucnnr 15061 sseqval 34370 bj-finsumval0 37268 itcoval 48511 |
Copyright terms: Public domain | W3C validator |