Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqeq123d | Structured version Visualization version GIF version |
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
Ref | Expression |
---|---|
seqeq123d.1 | ⊢ (𝜑 → 𝑀 = 𝑁) |
seqeq123d.2 | ⊢ (𝜑 → + = 𝑄) |
seqeq123d.3 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
seqeq123d | ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqeq123d.1 | . . 3 ⊢ (𝜑 → 𝑀 = 𝑁) | |
2 | 1 | seqeq1d 13777 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹)) |
3 | seqeq123d.2 | . . 3 ⊢ (𝜑 → + = 𝑄) | |
4 | 3 | seqeq2d 13778 | . 2 ⊢ (𝜑 → seq𝑁( + , 𝐹) = seq𝑁(𝑄, 𝐹)) |
5 | seqeq123d.3 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
6 | 5 | seqeq3d 13779 | . 2 ⊢ (𝜑 → seq𝑁(𝑄, 𝐹) = seq𝑁(𝑄, 𝐺)) |
7 | 2, 4, 6 | 3eqtrd 2780 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 seqcseq 13771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-xp 5606 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-iota 6410 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-seq 13772 |
This theorem is referenced by: relexpsucnnr 14785 sseqval 32404 bj-finsumval0 35504 itcoval 46251 |
Copyright terms: Public domain | W3C validator |