MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqeq2d Structured version   Visualization version   GIF version

Theorem seqeq2d 13973
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypothesis
Ref Expression
seqeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
seqeq2d (𝜑 → seq𝑀(𝐴, 𝐹) = seq𝑀(𝐵, 𝐹))

Proof of Theorem seqeq2d
StepHypRef Expression
1 seqeqd.1 . 2 (𝜑𝐴 = 𝐵)
2 seqeq2 13970 . 2 (𝐴 = 𝐵 → seq𝑀(𝐴, 𝐹) = seq𝑀(𝐵, 𝐹))
31, 2syl 17 1 (𝜑 → seq𝑀(𝐴, 𝐹) = seq𝑀(𝐵, 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  seqcseq 13966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seq 13967
This theorem is referenced by:  seqeq123d  13975  sadfval  16422  smufval  16447  gsumvalx  18603  gsumpropd  18605  gsumress  18609  mulgfval  19001  mulgfvalALT  19002  ressmulgnnd  19010  submmulg  19050  subgmulg  19072  dvnfval  25824
  Copyright terms: Public domain W3C validator