MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqeq2d Structured version   Visualization version   GIF version

Theorem seqeq2d 14011
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypothesis
Ref Expression
seqeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
seqeq2d (𝜑 → seq𝑀(𝐴, 𝐹) = seq𝑀(𝐵, 𝐹))

Proof of Theorem seqeq2d
StepHypRef Expression
1 seqeqd.1 . 2 (𝜑𝐴 = 𝐵)
2 seqeq2 14008 . 2 (𝐴 = 𝐵 → seq𝑀(𝐴, 𝐹) = seq𝑀(𝐵, 𝐹))
31, 2syl 17 1 (𝜑 → seq𝑀(𝐴, 𝐹) = seq𝑀(𝐵, 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  seqcseq 14004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3058  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-xp 5686  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-iota 6503  df-fv 6559  df-ov 7427  df-oprab 7428  df-mpo 7429  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-seq 14005
This theorem is referenced by:  seqeq123d  14013  sadfval  16432  smufval  16457  gsumvalx  18641  gsumpropd  18643  gsumress  18647  mulgfval  19030  mulgfvalALT  19031  submmulg  19078  subgmulg  19100  dvnfval  25870  ressmulgnnd  41573
  Copyright terms: Public domain W3C validator