![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
Ref | Expression |
---|---|
seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
seqeq2d | ⊢ (𝜑 → seq𝑀(𝐴, 𝐹) = seq𝑀(𝐵, 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | seqeq2 13106 | . 2 ⊢ (𝐴 = 𝐵 → seq𝑀(𝐴, 𝐹) = seq𝑀(𝐵, 𝐹)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → seq𝑀(𝐴, 𝐹) = seq𝑀(𝐵, 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 seqcseq 13102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-xp 5352 df-cnv 5354 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-iota 6090 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-seq 13103 |
This theorem is referenced by: seqeq123d 13111 sadfval 15554 smufval 15579 gsumvalx 17630 gsumpropd 17632 gsumress 17636 mulgfval 17903 submmulg 17944 subgmulg 17966 dvnfval 24091 |
Copyright terms: Public domain | W3C validator |