MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqeq2d Structured version   Visualization version   GIF version

Theorem seqeq2d 13807
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypothesis
Ref Expression
seqeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
seqeq2d (𝜑 → seq𝑀(𝐴, 𝐹) = seq𝑀(𝐵, 𝐹))

Proof of Theorem seqeq2d
StepHypRef Expression
1 seqeqd.1 . 2 (𝜑𝐴 = 𝐵)
2 seqeq2 13804 . 2 (𝐴 = 𝐵 → seq𝑀(𝐴, 𝐹) = seq𝑀(𝐵, 𝐹))
31, 2syl 17 1 (𝜑 → seq𝑀(𝐴, 𝐹) = seq𝑀(𝐵, 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  seqcseq 13800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-br 5087  df-opab 5149  df-mpt 5170  df-xp 5613  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-iota 6417  df-fv 6473  df-ov 7319  df-oprab 7320  df-mpo 7321  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-seq 13801
This theorem is referenced by:  seqeq123d  13809  sadfval  16235  smufval  16260  gsumvalx  18434  gsumpropd  18436  gsumress  18440  mulgfval  18775  mulgfvalALT  18776  submmulg  18820  subgmulg  18842  dvnfval  25166
  Copyright terms: Public domain W3C validator