| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqeq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| seqeq3d | ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | seqeq3 13910 | . 2 ⊢ (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 seqcseq 13905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-xp 5622 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-iota 6437 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-seq 13906 |
| This theorem is referenced by: seqeq123d 13914 seqf1olem2 13946 seqf1o 13947 seqof2 13964 expval 13967 relexp1g 14930 sumeq1 15593 sumeq2w 15596 cbvsum 15599 cbvsumv 15600 sumeq2sdv 15607 summo 15621 fsum 15624 geomulcvg 15780 prodeq1f 15810 prodeq1 15811 prodeq2w 15814 prodeq2sdv 15827 prodmo 15840 fprod 15845 gsumvalx 18581 mulgval 18981 gsumval3eu 19814 gsumval3lem2 19816 gsumzres 19819 gsumzf1o 19822 elovolmr 25402 ovolctb 25416 ovoliunlem3 25430 ovoliunnul 25433 ovolshftlem1 25435 voliunlem3 25478 voliun 25480 uniioombllem2 25509 vitalilem4 25537 vitalilem5 25538 dvnfval 25849 mtestbdd 26339 radcnv0 26350 radcnvlt1 26352 radcnvle 26354 psercn 26361 pserdvlem2 26363 abelthlem1 26366 abelthlem3 26368 logtayl 26594 atantayl2 26873 atantayl3 26874 lgamgulm2 26971 lgamcvglem 26975 lgsval 27237 lgsval4 27253 lgsneg 27257 lgsmod 27259 dchrmusumlema 27429 dchrisum0lema 27450 faclim 35778 prodeq12sdv 36251 cbvsumdavw 36312 cbvproddavw 36313 cbvsumdavw2 36328 cbvproddavw2 36329 knoppcnlem9 36534 knoppndvlem4 36548 ovoliunnfl 37701 voliunnfl 37703 radcnvrat 44346 dvradcnv2 44379 binomcxplemcvg 44386 binomcxplemdvsum 44387 binomcxplemnotnn0 44388 sumnnodd 45669 stirlinglem5 46115 sge0isummpt2 46469 ovolval2lem 46680 |
| Copyright terms: Public domain | W3C validator |