Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqeq3d | Structured version Visualization version GIF version |
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
Ref | Expression |
---|---|
seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
seqeq3d | ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | seqeq3 13465 | . 2 ⊢ (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 seqcseq 13460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-12 2179 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rab 3062 df-v 3400 df-un 3848 df-in 3850 df-ss 3860 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-xp 5531 df-cnv 5533 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-iota 6297 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-seq 13461 |
This theorem is referenced by: seqeq123d 13469 seqf1olem2 13502 seqf1o 13503 seqof2 13520 expval 13523 relexp1g 14475 sumeq1 15138 sumeq2w 15142 cbvsum 15145 summo 15167 fsum 15170 geomulcvg 15324 prodeq1f 15354 prodeq2w 15358 prodmo 15382 fprod 15387 gsumvalx 18002 mulgval 18346 gsumval3eu 19143 gsumval3lem2 19145 gsumzres 19148 gsumzf1o 19151 elovolmr 24228 ovolctb 24242 ovoliunlem3 24256 ovoliunnul 24259 ovolshftlem1 24261 voliunlem3 24304 voliun 24306 uniioombllem2 24335 vitalilem4 24363 vitalilem5 24364 dvnfval 24674 mtestbdd 25152 radcnv0 25163 radcnvlt1 25165 radcnvle 25167 psercn 25173 pserdvlem2 25175 abelthlem1 25178 abelthlem3 25180 logtayl 25403 atantayl2 25676 atantayl3 25677 lgamgulm2 25773 lgamcvglem 25777 lgsval 26037 lgsval4 26053 lgsneg 26057 lgsmod 26059 dchrmusumlema 26229 dchrisum0lema 26250 faclim 33285 knoppcnlem9 34324 knoppndvlem4 34338 ovoliunnfl 35462 voliunnfl 35464 radcnvrat 41490 dvradcnv2 41523 binomcxplemcvg 41530 binomcxplemdvsum 41531 binomcxplemnotnn0 41532 sumnnodd 42733 stirlinglem5 43181 sge0isummpt2 43532 ovolval2lem 43743 |
Copyright terms: Public domain | W3C validator |