Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqeq3d | Structured version Visualization version GIF version |
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
Ref | Expression |
---|---|
seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
seqeq3d | ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | seqeq3 13735 | . 2 ⊢ (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 seqcseq 13730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-xp 5596 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-iota 6395 df-fv 6445 df-ov 7287 df-oprab 7288 df-mpo 7289 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-seq 13731 |
This theorem is referenced by: seqeq123d 13739 seqf1olem2 13772 seqf1o 13773 seqof2 13790 expval 13793 relexp1g 14746 sumeq1 15409 sumeq2w 15413 cbvsum 15416 summo 15438 fsum 15441 geomulcvg 15597 prodeq1f 15627 prodeq2w 15631 prodmo 15655 fprod 15660 gsumvalx 18369 mulgval 18713 gsumval3eu 19514 gsumval3lem2 19516 gsumzres 19519 gsumzf1o 19522 elovolmr 24649 ovolctb 24663 ovoliunlem3 24677 ovoliunnul 24680 ovolshftlem1 24682 voliunlem3 24725 voliun 24727 uniioombllem2 24756 vitalilem4 24784 vitalilem5 24785 dvnfval 25095 mtestbdd 25573 radcnv0 25584 radcnvlt1 25586 radcnvle 25588 psercn 25594 pserdvlem2 25596 abelthlem1 25599 abelthlem3 25601 logtayl 25824 atantayl2 26097 atantayl3 26098 lgamgulm2 26194 lgamcvglem 26198 lgsval 26458 lgsval4 26474 lgsneg 26478 lgsmod 26480 dchrmusumlema 26650 dchrisum0lema 26671 faclim 33721 knoppcnlem9 34690 knoppndvlem4 34704 ovoliunnfl 35828 voliunnfl 35830 radcnvrat 41939 dvradcnv2 41972 binomcxplemcvg 41979 binomcxplemdvsum 41980 binomcxplemnotnn0 41981 sumnnodd 43178 stirlinglem5 43626 sge0isummpt2 43977 ovolval2lem 44188 |
Copyright terms: Public domain | W3C validator |