| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqeq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| seqeq3d | ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | seqeq3 13915 | . 2 ⊢ (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 seqcseq 13910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-xp 5625 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-iota 6442 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-seq 13911 |
| This theorem is referenced by: seqeq123d 13919 seqf1olem2 13951 seqf1o 13952 seqof2 13969 expval 13972 relexp1g 14935 sumeq1 15598 sumeq2w 15601 cbvsum 15604 cbvsumv 15605 sumeq2sdv 15612 summo 15626 fsum 15629 geomulcvg 15785 prodeq1f 15815 prodeq1 15816 prodeq2w 15819 prodeq2sdv 15832 prodmo 15845 fprod 15850 gsumvalx 18586 mulgval 18986 gsumval3eu 19818 gsumval3lem2 19820 gsumzres 19823 gsumzf1o 19826 elovolmr 25405 ovolctb 25419 ovoliunlem3 25433 ovoliunnul 25436 ovolshftlem1 25438 voliunlem3 25481 voliun 25483 uniioombllem2 25512 vitalilem4 25540 vitalilem5 25541 dvnfval 25852 mtestbdd 26342 radcnv0 26353 radcnvlt1 26355 radcnvle 26357 psercn 26364 pserdvlem2 26366 abelthlem1 26369 abelthlem3 26371 logtayl 26597 atantayl2 26876 atantayl3 26877 lgamgulm2 26974 lgamcvglem 26978 lgsval 27240 lgsval4 27256 lgsneg 27260 lgsmod 27262 dchrmusumlema 27432 dchrisum0lema 27453 faclim 35811 prodeq12sdv 36283 cbvsumdavw 36344 cbvproddavw 36345 cbvsumdavw2 36360 cbvproddavw2 36361 knoppcnlem9 36566 knoppndvlem4 36580 ovoliunnfl 37722 voliunnfl 37724 radcnvrat 44431 dvradcnv2 44464 binomcxplemcvg 44471 binomcxplemdvsum 44472 binomcxplemnotnn0 44473 sumnnodd 45754 stirlinglem5 46200 sge0isummpt2 46554 ovolval2lem 46765 |
| Copyright terms: Public domain | W3C validator |