| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqeq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| seqeq3d | ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | seqeq3 13971 | . 2 ⊢ (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 seqcseq 13966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-xp 5644 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-iota 6464 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-seq 13967 |
| This theorem is referenced by: seqeq123d 13975 seqf1olem2 14007 seqf1o 14008 seqof2 14025 expval 14028 relexp1g 14992 sumeq1 15655 sumeq2w 15658 cbvsum 15661 cbvsumv 15662 sumeq2sdv 15669 summo 15683 fsum 15686 geomulcvg 15842 prodeq1f 15872 prodeq1 15873 prodeq2w 15876 prodeq2sdv 15889 prodmo 15902 fprod 15907 gsumvalx 18603 mulgval 19003 gsumval3eu 19834 gsumval3lem2 19836 gsumzres 19839 gsumzf1o 19842 elovolmr 25377 ovolctb 25391 ovoliunlem3 25405 ovoliunnul 25408 ovolshftlem1 25410 voliunlem3 25453 voliun 25455 uniioombllem2 25484 vitalilem4 25512 vitalilem5 25513 dvnfval 25824 mtestbdd 26314 radcnv0 26325 radcnvlt1 26327 radcnvle 26329 psercn 26336 pserdvlem2 26338 abelthlem1 26341 abelthlem3 26343 logtayl 26569 atantayl2 26848 atantayl3 26849 lgamgulm2 26946 lgamcvglem 26950 lgsval 27212 lgsval4 27228 lgsneg 27232 lgsmod 27234 dchrmusumlema 27404 dchrisum0lema 27425 faclim 35733 prodeq12sdv 36206 cbvsumdavw 36267 cbvproddavw 36268 cbvsumdavw2 36283 cbvproddavw2 36284 knoppcnlem9 36489 knoppndvlem4 36503 ovoliunnfl 37656 voliunnfl 37658 radcnvrat 44303 dvradcnv2 44336 binomcxplemcvg 44343 binomcxplemdvsum 44344 binomcxplemnotnn0 44345 sumnnodd 45628 stirlinglem5 46076 sge0isummpt2 46430 ovolval2lem 46641 |
| Copyright terms: Public domain | W3C validator |