| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqeq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| seqeq3d | ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | seqeq3 14024 | . 2 ⊢ (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 seqcseq 14019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-xp 5660 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-iota 6484 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-seq 14020 |
| This theorem is referenced by: seqeq123d 14028 seqf1olem2 14060 seqf1o 14061 seqof2 14078 expval 14081 relexp1g 15045 sumeq1 15705 sumeq2w 15708 cbvsum 15711 cbvsumv 15712 sumeq2sdv 15719 summo 15733 fsum 15736 geomulcvg 15892 prodeq1f 15922 prodeq1 15923 prodeq2w 15926 prodeq2sdv 15939 prodmo 15952 fprod 15957 gsumvalx 18654 mulgval 19054 gsumval3eu 19885 gsumval3lem2 19887 gsumzres 19890 gsumzf1o 19893 elovolmr 25429 ovolctb 25443 ovoliunlem3 25457 ovoliunnul 25460 ovolshftlem1 25462 voliunlem3 25505 voliun 25507 uniioombllem2 25536 vitalilem4 25564 vitalilem5 25565 dvnfval 25876 mtestbdd 26366 radcnv0 26377 radcnvlt1 26379 radcnvle 26381 psercn 26388 pserdvlem2 26390 abelthlem1 26393 abelthlem3 26395 logtayl 26621 atantayl2 26900 atantayl3 26901 lgamgulm2 26998 lgamcvglem 27002 lgsval 27264 lgsval4 27280 lgsneg 27284 lgsmod 27286 dchrmusumlema 27456 dchrisum0lema 27477 faclim 35763 prodeq12sdv 36236 cbvsumdavw 36297 cbvproddavw 36298 cbvsumdavw2 36313 cbvproddavw2 36314 knoppcnlem9 36519 knoppndvlem4 36533 ovoliunnfl 37686 voliunnfl 37688 radcnvrat 44338 dvradcnv2 44371 binomcxplemcvg 44378 binomcxplemdvsum 44379 binomcxplemnotnn0 44380 sumnnodd 45659 stirlinglem5 46107 sge0isummpt2 46461 ovolval2lem 46672 |
| Copyright terms: Public domain | W3C validator |