![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqeq3d | Structured version Visualization version GIF version |
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
Ref | Expression |
---|---|
seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
seqeq3d | ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | seqeq3 14044 | . 2 ⊢ (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 seqcseq 14039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5695 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-iota 6516 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-seq 14040 |
This theorem is referenced by: seqeq123d 14048 seqf1olem2 14080 seqf1o 14081 seqof2 14098 expval 14101 relexp1g 15062 sumeq1 15722 sumeq2w 15725 cbvsum 15728 cbvsumv 15729 sumeq2sdv 15736 summo 15750 fsum 15753 geomulcvg 15909 prodeq1f 15939 prodeq1 15940 prodeq2w 15943 prodeq2sdv 15956 prodmo 15969 fprod 15974 gsumvalx 18702 mulgval 19102 gsumval3eu 19937 gsumval3lem2 19939 gsumzres 19942 gsumzf1o 19945 elovolmr 25525 ovolctb 25539 ovoliunlem3 25553 ovoliunnul 25556 ovolshftlem1 25558 voliunlem3 25601 voliun 25603 uniioombllem2 25632 vitalilem4 25660 vitalilem5 25661 dvnfval 25973 mtestbdd 26463 radcnv0 26474 radcnvlt1 26476 radcnvle 26478 psercn 26485 pserdvlem2 26487 abelthlem1 26490 abelthlem3 26492 logtayl 26717 atantayl2 26996 atantayl3 26997 lgamgulm2 27094 lgamcvglem 27098 lgsval 27360 lgsval4 27376 lgsneg 27380 lgsmod 27382 dchrmusumlema 27552 dchrisum0lema 27573 faclim 35726 prodeq12sdv 36201 cbvsumdavw 36262 cbvproddavw 36263 cbvsumdavw2 36278 cbvproddavw2 36279 knoppcnlem9 36484 knoppndvlem4 36498 ovoliunnfl 37649 voliunnfl 37651 radcnvrat 44310 dvradcnv2 44343 binomcxplemcvg 44350 binomcxplemdvsum 44351 binomcxplemnotnn0 44352 sumnnodd 45586 stirlinglem5 46034 sge0isummpt2 46388 ovolval2lem 46599 |
Copyright terms: Public domain | W3C validator |