| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqeq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| seqeq3d | ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | seqeq3 13978 | . 2 ⊢ (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 seqcseq 13973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-iota 6467 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-seq 13974 |
| This theorem is referenced by: seqeq123d 13982 seqf1olem2 14014 seqf1o 14015 seqof2 14032 expval 14035 relexp1g 14999 sumeq1 15662 sumeq2w 15665 cbvsum 15668 cbvsumv 15669 sumeq2sdv 15676 summo 15690 fsum 15693 geomulcvg 15849 prodeq1f 15879 prodeq1 15880 prodeq2w 15883 prodeq2sdv 15896 prodmo 15909 fprod 15914 gsumvalx 18610 mulgval 19010 gsumval3eu 19841 gsumval3lem2 19843 gsumzres 19846 gsumzf1o 19849 elovolmr 25384 ovolctb 25398 ovoliunlem3 25412 ovoliunnul 25415 ovolshftlem1 25417 voliunlem3 25460 voliun 25462 uniioombllem2 25491 vitalilem4 25519 vitalilem5 25520 dvnfval 25831 mtestbdd 26321 radcnv0 26332 radcnvlt1 26334 radcnvle 26336 psercn 26343 pserdvlem2 26345 abelthlem1 26348 abelthlem3 26350 logtayl 26576 atantayl2 26855 atantayl3 26856 lgamgulm2 26953 lgamcvglem 26957 lgsval 27219 lgsval4 27235 lgsneg 27239 lgsmod 27241 dchrmusumlema 27411 dchrisum0lema 27432 faclim 35740 prodeq12sdv 36213 cbvsumdavw 36274 cbvproddavw 36275 cbvsumdavw2 36290 cbvproddavw2 36291 knoppcnlem9 36496 knoppndvlem4 36510 ovoliunnfl 37663 voliunnfl 37665 radcnvrat 44310 dvradcnv2 44343 binomcxplemcvg 44350 binomcxplemdvsum 44351 binomcxplemnotnn0 44352 sumnnodd 45635 stirlinglem5 46083 sge0isummpt2 46437 ovolval2lem 46648 |
| Copyright terms: Public domain | W3C validator |