| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqeq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| seqeq3d | ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | seqeq3 13931 | . 2 ⊢ (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 seqcseq 13926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5629 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-iota 6442 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-seq 13927 |
| This theorem is referenced by: seqeq123d 13935 seqf1olem2 13967 seqf1o 13968 seqof2 13985 expval 13988 relexp1g 14951 sumeq1 15614 sumeq2w 15617 cbvsum 15620 cbvsumv 15621 sumeq2sdv 15628 summo 15642 fsum 15645 geomulcvg 15801 prodeq1f 15831 prodeq1 15832 prodeq2w 15835 prodeq2sdv 15848 prodmo 15861 fprod 15866 gsumvalx 18568 mulgval 18968 gsumval3eu 19801 gsumval3lem2 19803 gsumzres 19806 gsumzf1o 19809 elovolmr 25393 ovolctb 25407 ovoliunlem3 25421 ovoliunnul 25424 ovolshftlem1 25426 voliunlem3 25469 voliun 25471 uniioombllem2 25500 vitalilem4 25528 vitalilem5 25529 dvnfval 25840 mtestbdd 26330 radcnv0 26341 radcnvlt1 26343 radcnvle 26345 psercn 26352 pserdvlem2 26354 abelthlem1 26357 abelthlem3 26359 logtayl 26585 atantayl2 26864 atantayl3 26865 lgamgulm2 26962 lgamcvglem 26966 lgsval 27228 lgsval4 27244 lgsneg 27248 lgsmod 27250 dchrmusumlema 27420 dchrisum0lema 27441 faclim 35718 prodeq12sdv 36191 cbvsumdavw 36252 cbvproddavw 36253 cbvsumdavw2 36268 cbvproddavw2 36269 knoppcnlem9 36474 knoppndvlem4 36488 ovoliunnfl 37641 voliunnfl 37643 radcnvrat 44287 dvradcnv2 44320 binomcxplemcvg 44327 binomcxplemdvsum 44328 binomcxplemnotnn0 44329 sumnnodd 45612 stirlinglem5 46060 sge0isummpt2 46414 ovolval2lem 46625 |
| Copyright terms: Public domain | W3C validator |