Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqeq3d | Structured version Visualization version GIF version |
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
Ref | Expression |
---|---|
seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
seqeq3d | ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | seqeq3 13654 | . 2 ⊢ (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 seqcseq 13649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-iota 6376 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-seq 13650 |
This theorem is referenced by: seqeq123d 13658 seqf1olem2 13691 seqf1o 13692 seqof2 13709 expval 13712 relexp1g 14665 sumeq1 15328 sumeq2w 15332 cbvsum 15335 summo 15357 fsum 15360 geomulcvg 15516 prodeq1f 15546 prodeq2w 15550 prodmo 15574 fprod 15579 gsumvalx 18275 mulgval 18619 gsumval3eu 19420 gsumval3lem2 19422 gsumzres 19425 gsumzf1o 19428 elovolmr 24545 ovolctb 24559 ovoliunlem3 24573 ovoliunnul 24576 ovolshftlem1 24578 voliunlem3 24621 voliun 24623 uniioombllem2 24652 vitalilem4 24680 vitalilem5 24681 dvnfval 24991 mtestbdd 25469 radcnv0 25480 radcnvlt1 25482 radcnvle 25484 psercn 25490 pserdvlem2 25492 abelthlem1 25495 abelthlem3 25497 logtayl 25720 atantayl2 25993 atantayl3 25994 lgamgulm2 26090 lgamcvglem 26094 lgsval 26354 lgsval4 26370 lgsneg 26374 lgsmod 26376 dchrmusumlema 26546 dchrisum0lema 26567 faclim 33618 knoppcnlem9 34608 knoppndvlem4 34622 ovoliunnfl 35746 voliunnfl 35748 radcnvrat 41821 dvradcnv2 41854 binomcxplemcvg 41861 binomcxplemdvsum 41862 binomcxplemnotnn0 41863 sumnnodd 43061 stirlinglem5 43509 sge0isummpt2 43860 ovolval2lem 44071 |
Copyright terms: Public domain | W3C validator |