![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqeq3d | Structured version Visualization version GIF version |
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
Ref | Expression |
---|---|
seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
seqeq3d | ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | seqeq3 14057 | . 2 ⊢ (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 seqcseq 14052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-seq 14053 |
This theorem is referenced by: seqeq123d 14061 seqf1olem2 14093 seqf1o 14094 seqof2 14111 expval 14114 relexp1g 15075 sumeq1 15737 sumeq2w 15740 cbvsum 15743 cbvsumv 15744 sumeq2sdv 15751 summo 15765 fsum 15768 geomulcvg 15924 prodeq1f 15954 prodeq1 15955 prodeq2w 15958 prodeq2sdv 15971 prodmo 15984 fprod 15989 gsumvalx 18714 mulgval 19111 gsumval3eu 19946 gsumval3lem2 19948 gsumzres 19951 gsumzf1o 19954 elovolmr 25530 ovolctb 25544 ovoliunlem3 25558 ovoliunnul 25561 ovolshftlem1 25563 voliunlem3 25606 voliun 25608 uniioombllem2 25637 vitalilem4 25665 vitalilem5 25666 dvnfval 25978 mtestbdd 26466 radcnv0 26477 radcnvlt1 26479 radcnvle 26481 psercn 26488 pserdvlem2 26490 abelthlem1 26493 abelthlem3 26495 logtayl 26720 atantayl2 26999 atantayl3 27000 lgamgulm2 27097 lgamcvglem 27101 lgsval 27363 lgsval4 27379 lgsneg 27383 lgsmod 27385 dchrmusumlema 27555 dchrisum0lema 27576 faclim 35708 prodeq12sdv 36184 cbvsumdavw 36245 cbvproddavw 36246 cbvsumdavw2 36261 cbvproddavw2 36262 knoppcnlem9 36467 knoppndvlem4 36481 ovoliunnfl 37622 voliunnfl 37624 radcnvrat 44283 dvradcnv2 44316 binomcxplemcvg 44323 binomcxplemdvsum 44324 binomcxplemnotnn0 44325 sumnnodd 45551 stirlinglem5 45999 sge0isummpt2 46353 ovolval2lem 46564 |
Copyright terms: Public domain | W3C validator |