![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
Ref | Expression |
---|---|
seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
seqeq1d | ⊢ (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | seqeq1 13058 | . 2 ⊢ (𝐴 = 𝐵 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 seqcseq 13055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-xp 5318 df-cnv 5320 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-iota 6064 df-fv 6109 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-seq 13056 |
This theorem is referenced by: seqeq123d 13064 seqf1olem2 13095 bcval5 13358 bcn2 13359 seqshft 14166 iserex 14728 isershft 14735 isercoll2 14740 isumsplit 14910 cvgrat 14952 ntrivcvg 14966 ntrivcvgtail 14969 fprodser 15016 eftlub 15175 gsumval2a 17594 gsumccat 17693 mulgnndir 17884 geolim3 24435 fmul01lt1lem2 40561 stirlinglem7 41040 stirlinglem12 41045 |
Copyright terms: Public domain | W3C validator |