MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqeq1d Structured version   Visualization version   GIF version

Theorem seqeq1d 13061
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypothesis
Ref Expression
seqeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
seqeq1d (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹))

Proof of Theorem seqeq1d
StepHypRef Expression
1 seqeqd.1 . 2 (𝜑𝐴 = 𝐵)
2 seqeq1 13058 . 2 (𝐴 = 𝐵 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹))
31, 2syl 17 1 (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  seqcseq 13055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-xp 5318  df-cnv 5320  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-iota 6064  df-fv 6109  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-seq 13056
This theorem is referenced by:  seqeq123d  13064  seqf1olem2  13095  bcval5  13358  bcn2  13359  seqshft  14166  iserex  14728  isershft  14735  isercoll2  14740  isumsplit  14910  cvgrat  14952  ntrivcvg  14966  ntrivcvgtail  14969  fprodser  15016  eftlub  15175  gsumval2a  17594  gsumccat  17693  mulgnndir  17884  geolim3  24435  fmul01lt1lem2  40561  stirlinglem7  41040  stirlinglem12  41045
  Copyright terms: Public domain W3C validator