MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqeq1d Structured version   Visualization version   GIF version

Theorem seqeq1d 14058
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypothesis
Ref Expression
seqeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
seqeq1d (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹))

Proof of Theorem seqeq1d
StepHypRef Expression
1 seqeqd.1 . 2 (𝜑𝐴 = 𝐵)
2 seqeq1 14055 . 2 (𝐴 = 𝐵 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹))
31, 2syl 17 1 (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  seqcseq 14052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5706  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fv 6581  df-ov 7451  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seq 14053
This theorem is referenced by:  seqeq123d  14061  seqf1olem2  14093  bcval5  14367  bcn2  14368  seqshft  15134  iserex  15705  isershft  15712  isercoll2  15717  isumsplit  15888  cvgrat  15931  ntrivcvg  15945  ntrivcvgtail  15948  fprodser  15997  eftlub  16157  gsumval2a  18723  gsumsgrpccat  18875  mulgnndir  19143  geolim3  26399  fmul01lt1lem2  45506  stirlinglem7  46001  stirlinglem12  46006
  Copyright terms: Public domain W3C validator