| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| seqeq1d | ⊢ (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | seqeq1 13976 | . 2 ⊢ (𝐴 = 𝐵 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 seqcseq 13973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-iota 6467 df-fv 6522 df-ov 7393 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-seq 13974 |
| This theorem is referenced by: seqeq123d 13982 seqf1olem2 14014 bcval5 14290 bcn2 14291 seqshft 15058 iserex 15630 isershft 15637 isercoll2 15642 isumsplit 15813 cvgrat 15856 ntrivcvg 15870 ntrivcvgtail 15873 fprodser 15922 eftlub 16084 gsumval2a 18619 gsumsgrpccat 18774 mulgnndir 19042 geolim3 26254 fmul01lt1lem2 45590 stirlinglem7 46085 stirlinglem12 46090 |
| Copyright terms: Public domain | W3C validator |