| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| seqeq1d | ⊢ (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | seqeq1 13911 | . 2 ⊢ (𝐴 = 𝐵 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 seqcseq 13908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-xp 5622 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-iota 6437 df-fv 6489 df-ov 7349 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-seq 13909 |
| This theorem is referenced by: seqeq123d 13917 seqf1olem2 13949 bcval5 14225 bcn2 14226 seqshft 14992 iserex 15564 isershft 15571 isercoll2 15576 isumsplit 15747 cvgrat 15790 ntrivcvg 15804 ntrivcvgtail 15807 fprodser 15856 eftlub 16018 gsumval2a 18593 gsumsgrpccat 18748 mulgnndir 19016 geolim3 26275 fmul01lt1lem2 45631 stirlinglem7 46124 stirlinglem12 46129 |
| Copyright terms: Public domain | W3C validator |