MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expsval Structured version   Visualization version   GIF version

Theorem expsval 28352
Description: The value of surreal exponentiation. (Contributed by Scott Fenton, 24-Jul-2025.)
Assertion
Ref Expression
expsval ((𝐴 No 𝐵 ∈ ℤs) → (𝐴s𝐵) = if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))))

Proof of Theorem expsval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . . . . . 6 (𝑥 = 𝐴 → 1s = 1s )
2 eqidd 2730 . . . . . 6 (𝑥 = 𝐴 → ·s = ·s )
3 sneq 4595 . . . . . . 7 (𝑥 = 𝐴 → {𝑥} = {𝐴})
43xpeq2d 5661 . . . . . 6 (𝑥 = 𝐴 → (ℕs × {𝑥}) = (ℕs × {𝐴}))
51, 2, 4seqseq123d 28220 . . . . 5 (𝑥 = 𝐴 → seqs 1s ( ·s , (ℕs × {𝑥})) = seqs 1s ( ·s , (ℕs × {𝐴})))
65fveq1d 6842 . . . 4 (𝑥 = 𝐴 → (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦))
75fveq1d 6842 . . . . 5 (𝑥 = 𝐴 → (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦)) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)))
87oveq2d 7385 . . . 4 (𝑥 = 𝐴 → ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦))) = ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))))
96, 8ifeq12d 4506 . . 3 (𝑥 = 𝐴 → if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦)))) = if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)))))
109ifeq2d 4505 . 2 (𝑥 = 𝐴 → if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦))))) = if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))))))
11 eqeq1 2733 . . 3 (𝑦 = 𝐵 → (𝑦 = 0s𝐵 = 0s ))
12 breq2 5106 . . . 4 (𝑦 = 𝐵 → ( 0s <s 𝑦 ↔ 0s <s 𝐵))
13 fveq2 6840 . . . 4 (𝑦 = 𝐵 → (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵))
14 2fveq3 6845 . . . . 5 (𝑦 = 𝐵 → (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵)))
1514oveq2d 7385 . . . 4 (𝑦 = 𝐵 → ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))) = ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))
1612, 13, 15ifbieq12d 4513 . . 3 (𝑦 = 𝐵 → if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)))) = if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵)))))
1711, 16ifbieq2d 4511 . 2 (𝑦 = 𝐵 → if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))))) = if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))))
18 df-exps 28340 . 2 s = (𝑥 No , 𝑦 ∈ ℤs ↦ if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦))))))
19 1sno 27776 . . . 4 1s No
2019elexi 3467 . . 3 1s ∈ V
21 fvex 6853 . . . 4 (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵) ∈ V
22 ovex 7402 . . . 4 ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))) ∈ V
2321, 22ifex 4535 . . 3 if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵)))) ∈ V
2420, 23ifex 4535 . 2 if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))) ∈ V
2510, 17, 18, 24ovmpo 7529 1 ((𝐴 No 𝐵 ∈ ℤs) → (𝐴s𝐵) = if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4484  {csn 4585   class class class wbr 5102   × cxp 5629  cfv 6499  (class class class)co 7369   No csur 27584   <s cslt 27585   0s c0s 27771   1s c1s 27772   -us cnegs 27965   ·s cmuls 28049   /su cdivs 28130  seqscseqs 28217  scnns 28247  sczs 28306  scexps 28339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-no 27587  df-slt 27588  df-bday 27589  df-sslt 27727  df-scut 27729  df-0s 27773  df-1s 27774  df-seqs 28218  df-exps 28340
This theorem is referenced by:  expsnnval  28353  exps0  28354
  Copyright terms: Public domain W3C validator