MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expsval Structured version   Visualization version   GIF version

Theorem expsval 28318
Description: The value of surreal exponentiation. (Contributed by Scott Fenton, 24-Jul-2025.)
Assertion
Ref Expression
expsval ((𝐴 No 𝐵 ∈ ℤs) → (𝐴s𝐵) = if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))))

Proof of Theorem expsval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2731 . . . . . 6 (𝑥 = 𝐴 → 1s = 1s )
2 eqidd 2731 . . . . . 6 (𝑥 = 𝐴 → ·s = ·s )
3 sneq 4602 . . . . . . 7 (𝑥 = 𝐴 → {𝑥} = {𝐴})
43xpeq2d 5671 . . . . . 6 (𝑥 = 𝐴 → (ℕs × {𝑥}) = (ℕs × {𝐴}))
51, 2, 4seqseq123d 28187 . . . . 5 (𝑥 = 𝐴 → seqs 1s ( ·s , (ℕs × {𝑥})) = seqs 1s ( ·s , (ℕs × {𝐴})))
65fveq1d 6863 . . . 4 (𝑥 = 𝐴 → (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦))
75fveq1d 6863 . . . . 5 (𝑥 = 𝐴 → (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦)) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)))
87oveq2d 7406 . . . 4 (𝑥 = 𝐴 → ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦))) = ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))))
96, 8ifeq12d 4513 . . 3 (𝑥 = 𝐴 → if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦)))) = if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)))))
109ifeq2d 4512 . 2 (𝑥 = 𝐴 → if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦))))) = if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))))))
11 eqeq1 2734 . . 3 (𝑦 = 𝐵 → (𝑦 = 0s𝐵 = 0s ))
12 breq2 5114 . . . 4 (𝑦 = 𝐵 → ( 0s <s 𝑦 ↔ 0s <s 𝐵))
13 fveq2 6861 . . . 4 (𝑦 = 𝐵 → (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵))
14 2fveq3 6866 . . . . 5 (𝑦 = 𝐵 → (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵)))
1514oveq2d 7406 . . . 4 (𝑦 = 𝐵 → ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))) = ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))
1612, 13, 15ifbieq12d 4520 . . 3 (𝑦 = 𝐵 → if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)))) = if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵)))))
1711, 16ifbieq2d 4518 . 2 (𝑦 = 𝐵 → if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))))) = if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))))
18 df-exps 28306 . 2 s = (𝑥 No , 𝑦 ∈ ℤs ↦ if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦))))))
19 1sno 27746 . . . 4 1s No
2019elexi 3473 . . 3 1s ∈ V
21 fvex 6874 . . . 4 (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵) ∈ V
22 ovex 7423 . . . 4 ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))) ∈ V
2321, 22ifex 4542 . . 3 if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵)))) ∈ V
2420, 23ifex 4542 . 2 if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))) ∈ V
2510, 17, 18, 24ovmpo 7552 1 ((𝐴 No 𝐵 ∈ ℤs) → (𝐴s𝐵) = if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4491  {csn 4592   class class class wbr 5110   × cxp 5639  cfv 6514  (class class class)co 7390   No csur 27558   <s cslt 27559   0s c0s 27741   1s c1s 27742   -us cnegs 27932   ·s cmuls 28016   /su cdivs 28097  seqscseqs 28184  scnns 28214  sczs 28273  scexps 28305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-seqs 28185  df-exps 28306
This theorem is referenced by:  expsnnval  28319  exps0  28320
  Copyright terms: Public domain W3C validator