MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expsval Structured version   Visualization version   GIF version

Theorem expsval 28317
Description: The value of surreal exponentiation. (Contributed by Scott Fenton, 24-Jul-2025.)
Assertion
Ref Expression
expsval ((𝐴 No 𝐵 ∈ ℤs) → (𝐴s𝐵) = if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))))

Proof of Theorem expsval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . . . . . 6 (𝑥 = 𝐴 → 1s = 1s )
2 eqidd 2730 . . . . . 6 (𝑥 = 𝐴 → ·s = ·s )
3 sneq 4587 . . . . . . 7 (𝑥 = 𝐴 → {𝑥} = {𝐴})
43xpeq2d 5649 . . . . . 6 (𝑥 = 𝐴 → (ℕs × {𝑥}) = (ℕs × {𝐴}))
51, 2, 4seqseq123d 28185 . . . . 5 (𝑥 = 𝐴 → seqs 1s ( ·s , (ℕs × {𝑥})) = seqs 1s ( ·s , (ℕs × {𝐴})))
65fveq1d 6824 . . . 4 (𝑥 = 𝐴 → (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦))
75fveq1d 6824 . . . . 5 (𝑥 = 𝐴 → (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦)) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)))
87oveq2d 7365 . . . 4 (𝑥 = 𝐴 → ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦))) = ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))))
96, 8ifeq12d 4498 . . 3 (𝑥 = 𝐴 → if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦)))) = if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)))))
109ifeq2d 4497 . 2 (𝑥 = 𝐴 → if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦))))) = if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))))))
11 eqeq1 2733 . . 3 (𝑦 = 𝐵 → (𝑦 = 0s𝐵 = 0s ))
12 breq2 5096 . . . 4 (𝑦 = 𝐵 → ( 0s <s 𝑦 ↔ 0s <s 𝐵))
13 fveq2 6822 . . . 4 (𝑦 = 𝐵 → (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵))
14 2fveq3 6827 . . . . 5 (𝑦 = 𝐵 → (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵)))
1514oveq2d 7365 . . . 4 (𝑦 = 𝐵 → ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))) = ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))
1612, 13, 15ifbieq12d 4505 . . 3 (𝑦 = 𝐵 → if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)))) = if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵)))))
1711, 16ifbieq2d 4503 . 2 (𝑦 = 𝐵 → if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))))) = if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))))
18 df-exps 28305 . 2 s = (𝑥 No , 𝑦 ∈ ℤs ↦ if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦))))))
19 1sno 27741 . . . 4 1s No
2019elexi 3459 . . 3 1s ∈ V
21 fvex 6835 . . . 4 (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵) ∈ V
22 ovex 7382 . . . 4 ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))) ∈ V
2321, 22ifex 4527 . . 3 if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵)))) ∈ V
2420, 23ifex 4527 . 2 if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))) ∈ V
2510, 17, 18, 24ovmpo 7509 1 ((𝐴 No 𝐵 ∈ ℤs) → (𝐴s𝐵) = if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4476  {csn 4577   class class class wbr 5092   × cxp 5617  cfv 6482  (class class class)co 7349   No csur 27549   <s cslt 27550   0s c0s 27736   1s c1s 27737   -us cnegs 27930   ·s cmuls 28014   /su cdivs 28095  seqscseqs 28182  scnns 28212  sczs 28271  scexps 28304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-no 27552  df-slt 27553  df-bday 27554  df-sslt 27692  df-scut 27694  df-0s 27738  df-1s 27739  df-seqs 28183  df-exps 28305
This theorem is referenced by:  expsnnval  28318  exps0  28319
  Copyright terms: Public domain W3C validator