MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expsval Structured version   Visualization version   GIF version

Theorem expsval 28423
Description: The value of surreal exponentiation. (Contributed by Scott Fenton, 24-Jul-2025.)
Assertion
Ref Expression
expsval ((𝐴 No 𝐵 ∈ ℤs) → (𝐴s𝐵) = if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))))

Proof of Theorem expsval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2736 . . . . . 6 (𝑥 = 𝐴 → 1s = 1s )
2 eqidd 2736 . . . . . 6 (𝑥 = 𝐴 → ·s = ·s )
3 sneq 4641 . . . . . . 7 (𝑥 = 𝐴 → {𝑥} = {𝐴})
43xpeq2d 5719 . . . . . 6 (𝑥 = 𝐴 → (ℕs × {𝑥}) = (ℕs × {𝐴}))
51, 2, 4seqseq123d 28307 . . . . 5 (𝑥 = 𝐴 → seqs 1s ( ·s , (ℕs × {𝑥})) = seqs 1s ( ·s , (ℕs × {𝐴})))
65fveq1d 6909 . . . 4 (𝑥 = 𝐴 → (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦))
75fveq1d 6909 . . . . 5 (𝑥 = 𝐴 → (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦)) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)))
87oveq2d 7447 . . . 4 (𝑥 = 𝐴 → ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦))) = ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))))
96, 8ifeq12d 4552 . . 3 (𝑥 = 𝐴 → if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦)))) = if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)))))
109ifeq2d 4551 . 2 (𝑥 = 𝐴 → if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦))))) = if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))))))
11 eqeq1 2739 . . 3 (𝑦 = 𝐵 → (𝑦 = 0s𝐵 = 0s ))
12 breq2 5152 . . . 4 (𝑦 = 𝐵 → ( 0s <s 𝑦 ↔ 0s <s 𝐵))
13 fveq2 6907 . . . 4 (𝑦 = 𝐵 → (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵))
14 2fveq3 6912 . . . . 5 (𝑦 = 𝐵 → (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵)))
1514oveq2d 7447 . . . 4 (𝑦 = 𝐵 → ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))) = ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))
1612, 13, 15ifbieq12d 4559 . . 3 (𝑦 = 𝐵 → if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)))) = if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵)))))
1711, 16ifbieq2d 4557 . 2 (𝑦 = 𝐵 → if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))))) = if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))))
18 df-exps 28412 . 2 s = (𝑥 No , 𝑦 ∈ ℤs ↦ if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦))))))
19 1sno 27887 . . . 4 1s No
2019elexi 3501 . . 3 1s ∈ V
21 fvex 6920 . . . 4 (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵) ∈ V
22 ovex 7464 . . . 4 ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))) ∈ V
2321, 22ifex 4581 . . 3 if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵)))) ∈ V
2420, 23ifex 4581 . 2 if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))) ∈ V
2510, 17, 18, 24ovmpo 7593 1 ((𝐴 No 𝐵 ∈ ℤs) → (𝐴s𝐵) = if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  ifcif 4531  {csn 4631   class class class wbr 5148   × cxp 5687  cfv 6563  (class class class)co 7431   No csur 27699   <s cslt 27700   0s c0s 27882   1s c1s 27883   -us cnegs 28066   ·s cmuls 28147   /su cdivs 28228  seqscseqs 28304  scnns 28334  sczs 28379  scexps 28411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703  df-bday 27704  df-sslt 27841  df-scut 27843  df-0s 27884  df-1s 27885  df-seqs 28305  df-exps 28412
This theorem is referenced by:  expsnnval  28424  exps0  28425
  Copyright terms: Public domain W3C validator