| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2737 |
. . . . . 6
⊢ (𝑥 = 𝐴 → 1s = 1s
) |
| 2 | | eqidd 2737 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ·s =
·s ) |
| 3 | | sneq 4616 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) |
| 4 | 3 | xpeq2d 5689 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (ℕs × {𝑥}) = (ℕs
× {𝐴})) |
| 5 | 1, 2, 4 | seqseq123d 28237 |
. . . . 5
⊢ (𝑥 = 𝐴 → seqs 1s (
·s , (ℕs × {𝑥})) = seqs 1s (
·s , (ℕs × {𝐴}))) |
| 6 | 5 | fveq1d 6883 |
. . . 4
⊢ (𝑥 = 𝐴 → (seqs 1s (
·s , (ℕs × {𝑥}))‘𝑦) = (seqs 1s (
·s , (ℕs × {𝐴}))‘𝑦)) |
| 7 | 5 | fveq1d 6883 |
. . . . 5
⊢ (𝑥 = 𝐴 → (seqs 1s (
·s , (ℕs × {𝑥}))‘( -us ‘𝑦)) = (seqs
1s ( ·s , (ℕs × {𝐴}))‘( -us
‘𝑦))) |
| 8 | 7 | oveq2d 7426 |
. . . 4
⊢ (𝑥 = 𝐴 → ( 1s /su
(seqs 1s ( ·s , (ℕs
× {𝑥}))‘(
-us ‘𝑦)))
= ( 1s /su (seqs 1s (
·s , (ℕs × {𝐴}))‘( -us ‘𝑦)))) |
| 9 | 6, 8 | ifeq12d 4527 |
. . 3
⊢ (𝑥 = 𝐴 → if( 0s <s 𝑦, (seqs 1s
( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su
(seqs 1s ( ·s , (ℕs
× {𝑥}))‘(
-us ‘𝑦))))
= if( 0s <s 𝑦, (seqs 1s (
·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su
(seqs 1s ( ·s , (ℕs
× {𝐴}))‘(
-us ‘𝑦))))) |
| 10 | 9 | ifeq2d 4526 |
. 2
⊢ (𝑥 = 𝐴 → if(𝑦 = 0s , 1s , if(
0s <s 𝑦,
(seqs 1s ( ·s , (ℕs
× {𝑥}))‘𝑦), ( 1s
/su (seqs 1s ( ·s ,
(ℕs × {𝑥}))‘( -us ‘𝑦))))) = if(𝑦 = 0s , 1s , if(
0s <s 𝑦,
(seqs 1s ( ·s , (ℕs
× {𝐴}))‘𝑦), ( 1s
/su (seqs 1s ( ·s ,
(ℕs × {𝐴}))‘( -us ‘𝑦)))))) |
| 11 | | eqeq1 2740 |
. . 3
⊢ (𝑦 = 𝐵 → (𝑦 = 0s ↔ 𝐵 = 0s )) |
| 12 | | breq2 5128 |
. . . 4
⊢ (𝑦 = 𝐵 → ( 0s <s 𝑦 ↔ 0s <s
𝐵)) |
| 13 | | fveq2 6881 |
. . . 4
⊢ (𝑦 = 𝐵 → (seqs 1s (
·s , (ℕs × {𝐴}))‘𝑦) = (seqs 1s (
·s , (ℕs × {𝐴}))‘𝐵)) |
| 14 | | 2fveq3 6886 |
. . . . 5
⊢ (𝑦 = 𝐵 → (seqs 1s (
·s , (ℕs × {𝐴}))‘( -us ‘𝑦)) = (seqs
1s ( ·s , (ℕs × {𝐴}))‘( -us
‘𝐵))) |
| 15 | 14 | oveq2d 7426 |
. . . 4
⊢ (𝑦 = 𝐵 → ( 1s /su
(seqs 1s ( ·s , (ℕs
× {𝐴}))‘(
-us ‘𝑦)))
= ( 1s /su (seqs 1s (
·s , (ℕs × {𝐴}))‘( -us ‘𝐵)))) |
| 16 | 12, 13, 15 | ifbieq12d 4534 |
. . 3
⊢ (𝑦 = 𝐵 → if( 0s <s 𝑦, (seqs 1s
( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su
(seqs 1s ( ·s , (ℕs
× {𝐴}))‘(
-us ‘𝑦))))
= if( 0s <s 𝐵, (seqs 1s (
·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su
(seqs 1s ( ·s , (ℕs
× {𝐴}))‘(
-us ‘𝐵))))) |
| 17 | 11, 16 | ifbieq2d 4532 |
. 2
⊢ (𝑦 = 𝐵 → if(𝑦 = 0s , 1s , if(
0s <s 𝑦,
(seqs 1s ( ·s , (ℕs
× {𝐴}))‘𝑦), ( 1s
/su (seqs 1s ( ·s ,
(ℕs × {𝐴}))‘( -us ‘𝑦))))) = if(𝐵 = 0s , 1s , if(
0s <s 𝐵,
(seqs 1s ( ·s , (ℕs
× {𝐴}))‘𝐵), ( 1s
/su (seqs 1s ( ·s ,
(ℕs × {𝐴}))‘( -us ‘𝐵)))))) |
| 18 | | df-exps 28356 |
. 2
⊢
↑s = (𝑥 ∈ No ,
𝑦 ∈
ℤs ↦ if(𝑦 = 0s , 1s , if(
0s <s 𝑦,
(seqs 1s ( ·s , (ℕs
× {𝑥}))‘𝑦), ( 1s
/su (seqs 1s ( ·s ,
(ℕs × {𝑥}))‘( -us ‘𝑦)))))) |
| 19 | | 1sno 27796 |
. . . 4
⊢
1s ∈ No |
| 20 | 19 | elexi 3487 |
. . 3
⊢
1s ∈ V |
| 21 | | fvex 6894 |
. . . 4
⊢
(seqs 1s ( ·s ,
(ℕs × {𝐴}))‘𝐵) ∈ V |
| 22 | | ovex 7443 |
. . . 4
⊢ (
1s /su (seqs 1s (
·s , (ℕs × {𝐴}))‘( -us ‘𝐵))) ∈ V |
| 23 | 21, 22 | ifex 4556 |
. . 3
⊢ if(
0s <s 𝐵,
(seqs 1s ( ·s , (ℕs
× {𝐴}))‘𝐵), ( 1s
/su (seqs 1s ( ·s ,
(ℕs × {𝐴}))‘( -us ‘𝐵)))) ∈ V |
| 24 | 20, 23 | ifex 4556 |
. 2
⊢ if(𝐵 = 0s , 1s
, if( 0s <s 𝐵, (seqs 1s (
·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su
(seqs 1s ( ·s , (ℕs
× {𝐴}))‘(
-us ‘𝐵))))) ∈ V |
| 25 | 10, 17, 18, 24 | ovmpo 7572 |
1
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
ℤs) → (𝐴↑s𝐵) = if(𝐵 = 0s , 1s , if(
0s <s 𝐵,
(seqs 1s ( ·s , (ℕs
× {𝐴}))‘𝐵), ( 1s
/su (seqs 1s ( ·s ,
(ℕs × {𝐴}))‘( -us ‘𝐵)))))) |