MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expsval Structured version   Visualization version   GIF version

Theorem expsval 28426
Description: The value of surreal exponentiation. (Contributed by Scott Fenton, 24-Jul-2025.)
Assertion
Ref Expression
expsval ((𝐴 No 𝐵 ∈ ℤs) → (𝐴s𝐵) = if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))))

Proof of Theorem expsval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2741 . . . . . 6 (𝑥 = 𝐴 → 1s = 1s )
2 eqidd 2741 . . . . . 6 (𝑥 = 𝐴 → ·s = ·s )
3 sneq 4658 . . . . . . 7 (𝑥 = 𝐴 → {𝑥} = {𝐴})
43xpeq2d 5730 . . . . . 6 (𝑥 = 𝐴 → (ℕs × {𝑥}) = (ℕs × {𝐴}))
51, 2, 4seqseq123d 28310 . . . . 5 (𝑥 = 𝐴 → seqs 1s ( ·s , (ℕs × {𝑥})) = seqs 1s ( ·s , (ℕs × {𝐴})))
65fveq1d 6922 . . . 4 (𝑥 = 𝐴 → (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦))
75fveq1d 6922 . . . . 5 (𝑥 = 𝐴 → (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦)) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)))
87oveq2d 7464 . . . 4 (𝑥 = 𝐴 → ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦))) = ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))))
96, 8ifeq12d 4569 . . 3 (𝑥 = 𝐴 → if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦)))) = if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)))))
109ifeq2d 4568 . 2 (𝑥 = 𝐴 → if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦))))) = if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))))))
11 eqeq1 2744 . . 3 (𝑦 = 𝐵 → (𝑦 = 0s𝐵 = 0s ))
12 breq2 5170 . . . 4 (𝑦 = 𝐵 → ( 0s <s 𝑦 ↔ 0s <s 𝐵))
13 fveq2 6920 . . . 4 (𝑦 = 𝐵 → (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵))
14 2fveq3 6925 . . . . 5 (𝑦 = 𝐵 → (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵)))
1514oveq2d 7464 . . . 4 (𝑦 = 𝐵 → ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))) = ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))
1612, 13, 15ifbieq12d 4576 . . 3 (𝑦 = 𝐵 → if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦)))) = if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵)))))
1711, 16ifbieq2d 4574 . 2 (𝑦 = 𝐵 → if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑦))))) = if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))))
18 df-exps 28415 . 2 s = (𝑥 No , 𝑦 ∈ ℤs ↦ if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦))))))
19 1sno 27890 . . . 4 1s No
2019elexi 3511 . . 3 1s ∈ V
21 fvex 6933 . . . 4 (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵) ∈ V
22 ovex 7481 . . . 4 ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))) ∈ V
2321, 22ifex 4598 . . 3 if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵)))) ∈ V
2420, 23ifex 4598 . 2 if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))) ∈ V
2510, 17, 18, 24ovmpo 7610 1 ((𝐴 No 𝐵 ∈ ℤs) → (𝐴s𝐵) = if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  ifcif 4548  {csn 4648   class class class wbr 5166   × cxp 5698  cfv 6573  (class class class)co 7448   No csur 27702   <s cslt 27703   0s c0s 27885   1s c1s 27886   -us cnegs 28069   ·s cmuls 28150   /su cdivs 28231  seqscseqs 28307  scnns 28337  sczs 28382  scexps 28414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-seqs 28308  df-exps 28415
This theorem is referenced by:  expsnnval  28427  exps0  28428
  Copyright terms: Public domain W3C validator