Step | Hyp | Ref
| Expression |
1 | | prdsrngd.y |
. . 3
β’ π = (πXsπ
) |
2 | | prdsrngd.i |
. . 3
β’ (π β πΌ β π) |
3 | | prdsrngd.s |
. . 3
β’ (π β π β π) |
4 | | prdsrngd.r |
. . . 4
β’ (π β π
:πΌβΆRng) |
5 | | rngabl 46641 |
. . . . 5
β’ (π₯ β Rng β π₯ β Abel) |
6 | 5 | ssriv 3986 |
. . . 4
β’ Rng
β Abel |
7 | | fss 6734 |
. . . 4
β’ ((π
:πΌβΆRng β§ Rng β Abel) β
π
:πΌβΆAbel) |
8 | 4, 6, 7 | sylancl 586 |
. . 3
β’ (π β π
:πΌβΆAbel) |
9 | 1, 2, 3, 8 | prdsabld 19729 |
. 2
β’ (π β π β Abel) |
10 | | eqid 2732 |
. . . 4
β’ (πXs(mulGrp β π
)) = (πXs(mulGrp β π
)) |
11 | | rngmgpf 46643 |
. . . . 5
β’ (mulGrp
βΎ Rng):RngβΆSmgrp |
12 | | fco2 6744 |
. . . . 5
β’ (((mulGrp
βΎ Rng):RngβΆSmgrp β§ π
:πΌβΆRng) β (mulGrp β π
):πΌβΆSmgrp) |
13 | 11, 4, 12 | sylancr 587 |
. . . 4
β’ (π β (mulGrp β π
):πΌβΆSmgrp) |
14 | 10, 2, 3, 13 | prdssgrpd 18623 |
. . 3
β’ (π β (πXs(mulGrp β π
)) β Smgrp) |
15 | | fvexd 6906 |
. . . 4
β’ (π β (mulGrpβπ) β V) |
16 | | ovexd 7443 |
. . . 4
β’ (π β (πXs(mulGrp β π
)) β V) |
17 | | eqidd 2733 |
. . . 4
β’ (π β
(Baseβ(mulGrpβπ)) = (Baseβ(mulGrpβπ))) |
18 | | eqid 2732 |
. . . . . 6
β’
(mulGrpβπ) =
(mulGrpβπ) |
19 | 4 | ffnd 6718 |
. . . . . 6
β’ (π β π
Fn πΌ) |
20 | 1, 18, 10, 2, 3, 19 | prdsmgp 20131 |
. . . . 5
β’ (π β
((Baseβ(mulGrpβπ)) = (Baseβ(πXs(mulGrp β π
))) β§
(+gβ(mulGrpβπ)) = (+gβ(πXs(mulGrp β π
))))) |
21 | 20 | simpld 495 |
. . . 4
β’ (π β
(Baseβ(mulGrpβπ)) = (Baseβ(πXs(mulGrp β π
)))) |
22 | 20 | simprd 496 |
. . . . 5
β’ (π β
(+gβ(mulGrpβπ)) = (+gβ(πXs(mulGrp β π
)))) |
23 | 22 | oveqdr 7436 |
. . . 4
β’ ((π β§ (π₯ β (Baseβ(mulGrpβπ)) β§ π¦ β (Baseβ(mulGrpβπ)))) β (π₯(+gβ(mulGrpβπ))π¦) = (π₯(+gβ(πXs(mulGrp β π
)))π¦)) |
24 | 15, 16, 17, 21, 23 | sgrppropd 18621 |
. . 3
β’ (π β ((mulGrpβπ) β Smgrp β (πXs(mulGrp β π
)) β Smgrp)) |
25 | 14, 24 | mpbird 256 |
. 2
β’ (π β (mulGrpβπ) β Smgrp) |
26 | 4 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π
:πΌβΆRng) |
27 | 26 | ffvelcdmda 7086 |
. . . . . . . 8
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β (π
βπ€) β Rng) |
28 | | eqid 2732 |
. . . . . . . . 9
β’
(Baseβπ) =
(Baseβπ) |
29 | 3 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π β π) |
30 | 29 | adantr 481 |
. . . . . . . . 9
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β π β π) |
31 | 2 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β πΌ β π) |
32 | 31 | adantr 481 |
. . . . . . . . 9
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β πΌ β π) |
33 | 19 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π
Fn πΌ) |
34 | 33 | adantr 481 |
. . . . . . . . 9
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β π
Fn πΌ) |
35 | | simplr1 1215 |
. . . . . . . . 9
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β π₯ β (Baseβπ)) |
36 | | simpr 485 |
. . . . . . . . 9
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β π€ β πΌ) |
37 | 1, 28, 30, 32, 34, 35, 36 | prdsbasprj 17417 |
. . . . . . . 8
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β (π₯βπ€) β (Baseβ(π
βπ€))) |
38 | | simpr2 1195 |
. . . . . . . . . 10
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π¦ β (Baseβπ)) |
39 | 38 | adantr 481 |
. . . . . . . . 9
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β π¦ β (Baseβπ)) |
40 | 1, 28, 30, 32, 34, 39, 36 | prdsbasprj 17417 |
. . . . . . . 8
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β (π¦βπ€) β (Baseβ(π
βπ€))) |
41 | | simpr3 1196 |
. . . . . . . . . 10
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π§ β (Baseβπ)) |
42 | 41 | adantr 481 |
. . . . . . . . 9
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β π§ β (Baseβπ)) |
43 | 1, 28, 30, 32, 34, 42, 36 | prdsbasprj 17417 |
. . . . . . . 8
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β (π§βπ€) β (Baseβ(π
βπ€))) |
44 | | eqid 2732 |
. . . . . . . . 9
β’
(Baseβ(π
βπ€)) = (Baseβ(π
βπ€)) |
45 | | eqid 2732 |
. . . . . . . . 9
β’
(+gβ(π
βπ€)) = (+gβ(π
βπ€)) |
46 | | eqid 2732 |
. . . . . . . . 9
β’
(.rβ(π
βπ€)) = (.rβ(π
βπ€)) |
47 | 44, 45, 46 | rngdi 46649 |
. . . . . . . 8
β’ (((π
βπ€) β Rng β§ ((π₯βπ€) β (Baseβ(π
βπ€)) β§ (π¦βπ€) β (Baseβ(π
βπ€)) β§ (π§βπ€) β (Baseβ(π
βπ€)))) β ((π₯βπ€)(.rβ(π
βπ€))((π¦βπ€)(+gβ(π
βπ€))(π§βπ€))) = (((π₯βπ€)(.rβ(π
βπ€))(π¦βπ€))(+gβ(π
βπ€))((π₯βπ€)(.rβ(π
βπ€))(π§βπ€)))) |
48 | 27, 37, 40, 43, 47 | syl13anc 1372 |
. . . . . . 7
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β ((π₯βπ€)(.rβ(π
βπ€))((π¦βπ€)(+gβ(π
βπ€))(π§βπ€))) = (((π₯βπ€)(.rβ(π
βπ€))(π¦βπ€))(+gβ(π
βπ€))((π₯βπ€)(.rβ(π
βπ€))(π§βπ€)))) |
49 | | eqid 2732 |
. . . . . . . . 9
β’
(+gβπ) = (+gβπ) |
50 | 1, 28, 30, 32, 34, 39, 42, 49, 36 | prdsplusgfval 17419 |
. . . . . . . 8
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β ((π¦(+gβπ)π§)βπ€) = ((π¦βπ€)(+gβ(π
βπ€))(π§βπ€))) |
51 | 50 | oveq2d 7424 |
. . . . . . 7
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β ((π₯βπ€)(.rβ(π
βπ€))((π¦(+gβπ)π§)βπ€)) = ((π₯βπ€)(.rβ(π
βπ€))((π¦βπ€)(+gβ(π
βπ€))(π§βπ€)))) |
52 | | eqid 2732 |
. . . . . . . . 9
β’
(.rβπ) = (.rβπ) |
53 | 1, 28, 30, 32, 34, 35, 39, 52, 36 | prdsmulrfval 17421 |
. . . . . . . 8
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β ((π₯(.rβπ)π¦)βπ€) = ((π₯βπ€)(.rβ(π
βπ€))(π¦βπ€))) |
54 | 1, 28, 30, 32, 34, 35, 42, 52, 36 | prdsmulrfval 17421 |
. . . . . . . 8
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β ((π₯(.rβπ)π§)βπ€) = ((π₯βπ€)(.rβ(π
βπ€))(π§βπ€))) |
55 | 53, 54 | oveq12d 7426 |
. . . . . . 7
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β (((π₯(.rβπ)π¦)βπ€)(+gβ(π
βπ€))((π₯(.rβπ)π§)βπ€)) = (((π₯βπ€)(.rβ(π
βπ€))(π¦βπ€))(+gβ(π
βπ€))((π₯βπ€)(.rβ(π
βπ€))(π§βπ€)))) |
56 | 48, 51, 55 | 3eqtr4d 2782 |
. . . . . 6
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β ((π₯βπ€)(.rβ(π
βπ€))((π¦(+gβπ)π§)βπ€)) = (((π₯(.rβπ)π¦)βπ€)(+gβ(π
βπ€))((π₯(.rβπ)π§)βπ€))) |
57 | 56 | mpteq2dva 5248 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π€ β πΌ β¦ ((π₯βπ€)(.rβ(π
βπ€))((π¦(+gβπ)π§)βπ€))) = (π€ β πΌ β¦ (((π₯(.rβπ)π¦)βπ€)(+gβ(π
βπ€))((π₯(.rβπ)π§)βπ€)))) |
58 | | simpr1 1194 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π₯ β (Baseβπ)) |
59 | | rnggrp 46644 |
. . . . . . . . . . 11
β’ (π₯ β Rng β π₯ β Grp) |
60 | 59 | grpmndd 18831 |
. . . . . . . . . 10
β’ (π₯ β Rng β π₯ β Mnd) |
61 | 60 | ssriv 3986 |
. . . . . . . . 9
β’ Rng
β Mnd |
62 | | fss 6734 |
. . . . . . . . 9
β’ ((π
:πΌβΆRng β§ Rng β Mnd) β
π
:πΌβΆMnd) |
63 | 4, 61, 62 | sylancl 586 |
. . . . . . . 8
β’ (π β π
:πΌβΆMnd) |
64 | 63 | adantr 481 |
. . . . . . 7
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π
:πΌβΆMnd) |
65 | 1, 28, 49, 29, 31, 64, 38, 41 | prdsplusgcl 18655 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π¦(+gβπ)π§) β (Baseβπ)) |
66 | 1, 28, 29, 31, 33, 58, 65, 52 | prdsmulrval 17420 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π₯(.rβπ)(π¦(+gβπ)π§)) = (π€ β πΌ β¦ ((π₯βπ€)(.rβ(π
βπ€))((π¦(+gβπ)π§)βπ€)))) |
67 | 1, 28, 52, 29, 31, 26, 58, 38 | prdsmulrngcl 46666 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π₯(.rβπ)π¦) β (Baseβπ)) |
68 | 1, 28, 52, 29, 31, 26, 58, 41 | prdsmulrngcl 46666 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π₯(.rβπ)π§) β (Baseβπ)) |
69 | 1, 28, 29, 31, 33, 67, 68, 49 | prdsplusgval 17418 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((π₯(.rβπ)π¦)(+gβπ)(π₯(.rβπ)π§)) = (π€ β πΌ β¦ (((π₯(.rβπ)π¦)βπ€)(+gβ(π
βπ€))((π₯(.rβπ)π§)βπ€)))) |
70 | 57, 66, 69 | 3eqtr4d 2782 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π₯(.rβπ)(π¦(+gβπ)π§)) = ((π₯(.rβπ)π¦)(+gβπ)(π₯(.rβπ)π§))) |
71 | 44, 45, 46 | rngdir 46650 |
. . . . . . . 8
β’ (((π
βπ€) β Rng β§ ((π₯βπ€) β (Baseβ(π
βπ€)) β§ (π¦βπ€) β (Baseβ(π
βπ€)) β§ (π§βπ€) β (Baseβ(π
βπ€)))) β (((π₯βπ€)(+gβ(π
βπ€))(π¦βπ€))(.rβ(π
βπ€))(π§βπ€)) = (((π₯βπ€)(.rβ(π
βπ€))(π§βπ€))(+gβ(π
βπ€))((π¦βπ€)(.rβ(π
βπ€))(π§βπ€)))) |
72 | 27, 37, 40, 43, 71 | syl13anc 1372 |
. . . . . . 7
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β (((π₯βπ€)(+gβ(π
βπ€))(π¦βπ€))(.rβ(π
βπ€))(π§βπ€)) = (((π₯βπ€)(.rβ(π
βπ€))(π§βπ€))(+gβ(π
βπ€))((π¦βπ€)(.rβ(π
βπ€))(π§βπ€)))) |
73 | 1, 28, 30, 32, 34, 35, 39, 49, 36 | prdsplusgfval 17419 |
. . . . . . . 8
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β ((π₯(+gβπ)π¦)βπ€) = ((π₯βπ€)(+gβ(π
βπ€))(π¦βπ€))) |
74 | 73 | oveq1d 7423 |
. . . . . . 7
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β (((π₯(+gβπ)π¦)βπ€)(.rβ(π
βπ€))(π§βπ€)) = (((π₯βπ€)(+gβ(π
βπ€))(π¦βπ€))(.rβ(π
βπ€))(π§βπ€))) |
75 | 1, 28, 30, 32, 34, 39, 42, 52, 36 | prdsmulrfval 17421 |
. . . . . . . 8
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β ((π¦(.rβπ)π§)βπ€) = ((π¦βπ€)(.rβ(π
βπ€))(π§βπ€))) |
76 | 54, 75 | oveq12d 7426 |
. . . . . . 7
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β (((π₯(.rβπ)π§)βπ€)(+gβ(π
βπ€))((π¦(.rβπ)π§)βπ€)) = (((π₯βπ€)(.rβ(π
βπ€))(π§βπ€))(+gβ(π
βπ€))((π¦βπ€)(.rβ(π
βπ€))(π§βπ€)))) |
77 | 72, 74, 76 | 3eqtr4d 2782 |
. . . . . 6
β’ (((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ π€ β πΌ) β (((π₯(+gβπ)π¦)βπ€)(.rβ(π
βπ€))(π§βπ€)) = (((π₯(.rβπ)π§)βπ€)(+gβ(π
βπ€))((π¦(.rβπ)π§)βπ€))) |
78 | 77 | mpteq2dva 5248 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π€ β πΌ β¦ (((π₯(+gβπ)π¦)βπ€)(.rβ(π
βπ€))(π§βπ€))) = (π€ β πΌ β¦ (((π₯(.rβπ)π§)βπ€)(+gβ(π
βπ€))((π¦(.rβπ)π§)βπ€)))) |
79 | 1, 28, 49, 29, 31, 64, 58, 38 | prdsplusgcl 18655 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π₯(+gβπ)π¦) β (Baseβπ)) |
80 | 1, 28, 29, 31, 33, 79, 41, 52 | prdsmulrval 17420 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((π₯(+gβπ)π¦)(.rβπ)π§) = (π€ β πΌ β¦ (((π₯(+gβπ)π¦)βπ€)(.rβ(π
βπ€))(π§βπ€)))) |
81 | 1, 28, 52, 29, 31, 26, 38, 41 | prdsmulrngcl 46666 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π¦(.rβπ)π§) β (Baseβπ)) |
82 | 1, 28, 29, 31, 33, 68, 81, 49 | prdsplusgval 17418 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((π₯(.rβπ)π§)(+gβπ)(π¦(.rβπ)π§)) = (π€ β πΌ β¦ (((π₯(.rβπ)π§)βπ€)(+gβ(π
βπ€))((π¦(.rβπ)π§)βπ€)))) |
83 | 78, 80, 82 | 3eqtr4d 2782 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((π₯(+gβπ)π¦)(.rβπ)π§) = ((π₯(.rβπ)π§)(+gβπ)(π¦(.rβπ)π§))) |
84 | 70, 83 | jca 512 |
. . 3
β’ ((π β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((π₯(.rβπ)(π¦(+gβπ)π§)) = ((π₯(.rβπ)π¦)(+gβπ)(π₯(.rβπ)π§)) β§ ((π₯(+gβπ)π¦)(.rβπ)π§) = ((π₯(.rβπ)π§)(+gβπ)(π¦(.rβπ)π§)))) |
85 | 84 | ralrimivvva 3203 |
. 2
β’ (π β βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)βπ§ β (Baseβπ)((π₯(.rβπ)(π¦(+gβπ)π§)) = ((π₯(.rβπ)π¦)(+gβπ)(π₯(.rβπ)π§)) β§ ((π₯(+gβπ)π¦)(.rβπ)π§) = ((π₯(.rβπ)π§)(+gβπ)(π¦(.rβπ)π§)))) |
86 | 28, 18, 49, 52 | isrng 46640 |
. 2
β’ (π β Rng β (π β Abel β§
(mulGrpβπ) β
Smgrp β§ βπ₯
β (Baseβπ)βπ¦ β (Baseβπ)βπ§ β (Baseβπ)((π₯(.rβπ)(π¦(+gβπ)π§)) = ((π₯(.rβπ)π¦)(+gβπ)(π₯(.rβπ)π§)) β§ ((π₯(+gβπ)π¦)(.rβπ)π§) = ((π₯(.rβπ)π§)(+gβπ)(π¦(.rβπ)π§))))) |
87 | 9, 25, 85, 86 | syl3anbrc 1343 |
1
β’ (π β π β Rng) |