MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsrngd Structured version   Visualization version   GIF version

Theorem prdsrngd 20081
Description: A product of non-unital rings is a non-unital ring. (Contributed by AV, 22-Feb-2025.)
Hypotheses
Ref Expression
prdsrngd.y π‘Œ = (𝑆Xs𝑅)
prdsrngd.i (πœ‘ β†’ 𝐼 ∈ π‘Š)
prdsrngd.s (πœ‘ β†’ 𝑆 ∈ 𝑉)
prdsrngd.r (πœ‘ β†’ 𝑅:𝐼⟢Rng)
Assertion
Ref Expression
prdsrngd (πœ‘ β†’ π‘Œ ∈ Rng)

Proof of Theorem prdsrngd
Dummy variables 𝑀 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsrngd.y . . 3 π‘Œ = (𝑆Xs𝑅)
2 prdsrngd.i . . 3 (πœ‘ β†’ 𝐼 ∈ π‘Š)
3 prdsrngd.s . . 3 (πœ‘ β†’ 𝑆 ∈ 𝑉)
4 prdsrngd.r . . . 4 (πœ‘ β†’ 𝑅:𝐼⟢Rng)
5 rngabl 20060 . . . . 5 (π‘₯ ∈ Rng β†’ π‘₯ ∈ Abel)
65ssriv 3981 . . . 4 Rng βŠ† Abel
7 fss 6728 . . . 4 ((𝑅:𝐼⟢Rng ∧ Rng βŠ† Abel) β†’ 𝑅:𝐼⟢Abel)
84, 6, 7sylancl 585 . . 3 (πœ‘ β†’ 𝑅:𝐼⟢Abel)
91, 2, 3, 8prdsabld 19782 . 2 (πœ‘ β†’ π‘Œ ∈ Abel)
10 eqid 2726 . . . 4 (𝑆Xs(mulGrp ∘ 𝑅)) = (𝑆Xs(mulGrp ∘ 𝑅))
11 rngmgpf 20062 . . . . 5 (mulGrp β†Ύ Rng):Rng⟢Smgrp
12 fco2 6738 . . . . 5 (((mulGrp β†Ύ Rng):Rng⟢Smgrp ∧ 𝑅:𝐼⟢Rng) β†’ (mulGrp ∘ 𝑅):𝐼⟢Smgrp)
1311, 4, 12sylancr 586 . . . 4 (πœ‘ β†’ (mulGrp ∘ 𝑅):𝐼⟢Smgrp)
1410, 2, 3, 13prdssgrpd 18666 . . 3 (πœ‘ β†’ (𝑆Xs(mulGrp ∘ 𝑅)) ∈ Smgrp)
15 fvexd 6900 . . . 4 (πœ‘ β†’ (mulGrpβ€˜π‘Œ) ∈ V)
16 ovexd 7440 . . . 4 (πœ‘ β†’ (𝑆Xs(mulGrp ∘ 𝑅)) ∈ V)
17 eqidd 2727 . . . 4 (πœ‘ β†’ (Baseβ€˜(mulGrpβ€˜π‘Œ)) = (Baseβ€˜(mulGrpβ€˜π‘Œ)))
18 eqid 2726 . . . . . 6 (mulGrpβ€˜π‘Œ) = (mulGrpβ€˜π‘Œ)
194ffnd 6712 . . . . . 6 (πœ‘ β†’ 𝑅 Fn 𝐼)
201, 18, 10, 2, 3, 19prdsmgp 20056 . . . . 5 (πœ‘ β†’ ((Baseβ€˜(mulGrpβ€˜π‘Œ)) = (Baseβ€˜(𝑆Xs(mulGrp ∘ 𝑅))) ∧ (+gβ€˜(mulGrpβ€˜π‘Œ)) = (+gβ€˜(𝑆Xs(mulGrp ∘ 𝑅)))))
2120simpld 494 . . . 4 (πœ‘ β†’ (Baseβ€˜(mulGrpβ€˜π‘Œ)) = (Baseβ€˜(𝑆Xs(mulGrp ∘ 𝑅))))
2220simprd 495 . . . . 5 (πœ‘ β†’ (+gβ€˜(mulGrpβ€˜π‘Œ)) = (+gβ€˜(𝑆Xs(mulGrp ∘ 𝑅))))
2322oveqdr 7433 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜(mulGrpβ€˜π‘Œ)) ∧ 𝑦 ∈ (Baseβ€˜(mulGrpβ€˜π‘Œ)))) β†’ (π‘₯(+gβ€˜(mulGrpβ€˜π‘Œ))𝑦) = (π‘₯(+gβ€˜(𝑆Xs(mulGrp ∘ 𝑅)))𝑦))
2415, 16, 17, 21, 23sgrppropd 18664 . . 3 (πœ‘ β†’ ((mulGrpβ€˜π‘Œ) ∈ Smgrp ↔ (𝑆Xs(mulGrp ∘ 𝑅)) ∈ Smgrp))
2514, 24mpbird 257 . 2 (πœ‘ β†’ (mulGrpβ€˜π‘Œ) ∈ Smgrp)
264adantr 480 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ 𝑅:𝐼⟢Rng)
2726ffvelcdmda 7080 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ (π‘…β€˜π‘€) ∈ Rng)
28 eqid 2726 . . . . . . . . 9 (Baseβ€˜π‘Œ) = (Baseβ€˜π‘Œ)
293adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ 𝑆 ∈ 𝑉)
3029adantr 480 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ 𝑆 ∈ 𝑉)
312adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ 𝐼 ∈ π‘Š)
3231adantr 480 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ 𝐼 ∈ π‘Š)
3319adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ 𝑅 Fn 𝐼)
3433adantr 480 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ 𝑅 Fn 𝐼)
35 simplr1 1212 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ π‘₯ ∈ (Baseβ€˜π‘Œ))
36 simpr 484 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ 𝑀 ∈ 𝐼)
371, 28, 30, 32, 34, 35, 36prdsbasprj 17427 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ (π‘₯β€˜π‘€) ∈ (Baseβ€˜(π‘…β€˜π‘€)))
38 simpr2 1192 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ 𝑦 ∈ (Baseβ€˜π‘Œ))
3938adantr 480 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ 𝑦 ∈ (Baseβ€˜π‘Œ))
401, 28, 30, 32, 34, 39, 36prdsbasprj 17427 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ (π‘¦β€˜π‘€) ∈ (Baseβ€˜(π‘…β€˜π‘€)))
41 simpr3 1193 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ 𝑧 ∈ (Baseβ€˜π‘Œ))
4241adantr 480 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ 𝑧 ∈ (Baseβ€˜π‘Œ))
431, 28, 30, 32, 34, 42, 36prdsbasprj 17427 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ (π‘§β€˜π‘€) ∈ (Baseβ€˜(π‘…β€˜π‘€)))
44 eqid 2726 . . . . . . . . 9 (Baseβ€˜(π‘…β€˜π‘€)) = (Baseβ€˜(π‘…β€˜π‘€))
45 eqid 2726 . . . . . . . . 9 (+gβ€˜(π‘…β€˜π‘€)) = (+gβ€˜(π‘…β€˜π‘€))
46 eqid 2726 . . . . . . . . 9 (.rβ€˜(π‘…β€˜π‘€)) = (.rβ€˜(π‘…β€˜π‘€))
4744, 45, 46rngdi 20065 . . . . . . . 8 (((π‘…β€˜π‘€) ∈ Rng ∧ ((π‘₯β€˜π‘€) ∈ (Baseβ€˜(π‘…β€˜π‘€)) ∧ (π‘¦β€˜π‘€) ∈ (Baseβ€˜(π‘…β€˜π‘€)) ∧ (π‘§β€˜π‘€) ∈ (Baseβ€˜(π‘…β€˜π‘€)))) β†’ ((π‘₯β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))((π‘¦β€˜π‘€)(+gβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€))) = (((π‘₯β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))(π‘¦β€˜π‘€))(+gβ€˜(π‘…β€˜π‘€))((π‘₯β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€))))
4827, 37, 40, 43, 47syl13anc 1369 . . . . . . 7 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ ((π‘₯β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))((π‘¦β€˜π‘€)(+gβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€))) = (((π‘₯β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))(π‘¦β€˜π‘€))(+gβ€˜(π‘…β€˜π‘€))((π‘₯β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€))))
49 eqid 2726 . . . . . . . . 9 (+gβ€˜π‘Œ) = (+gβ€˜π‘Œ)
501, 28, 30, 32, 34, 39, 42, 49, 36prdsplusgfval 17429 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ ((𝑦(+gβ€˜π‘Œ)𝑧)β€˜π‘€) = ((π‘¦β€˜π‘€)(+gβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€)))
5150oveq2d 7421 . . . . . . 7 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ ((π‘₯β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))((𝑦(+gβ€˜π‘Œ)𝑧)β€˜π‘€)) = ((π‘₯β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))((π‘¦β€˜π‘€)(+gβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€))))
52 eqid 2726 . . . . . . . . 9 (.rβ€˜π‘Œ) = (.rβ€˜π‘Œ)
531, 28, 30, 32, 34, 35, 39, 52, 36prdsmulrfval 17431 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ ((π‘₯(.rβ€˜π‘Œ)𝑦)β€˜π‘€) = ((π‘₯β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))(π‘¦β€˜π‘€)))
541, 28, 30, 32, 34, 35, 42, 52, 36prdsmulrfval 17431 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ ((π‘₯(.rβ€˜π‘Œ)𝑧)β€˜π‘€) = ((π‘₯β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€)))
5553, 54oveq12d 7423 . . . . . . 7 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ (((π‘₯(.rβ€˜π‘Œ)𝑦)β€˜π‘€)(+gβ€˜(π‘…β€˜π‘€))((π‘₯(.rβ€˜π‘Œ)𝑧)β€˜π‘€)) = (((π‘₯β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))(π‘¦β€˜π‘€))(+gβ€˜(π‘…β€˜π‘€))((π‘₯β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€))))
5648, 51, 553eqtr4d 2776 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ ((π‘₯β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))((𝑦(+gβ€˜π‘Œ)𝑧)β€˜π‘€)) = (((π‘₯(.rβ€˜π‘Œ)𝑦)β€˜π‘€)(+gβ€˜(π‘…β€˜π‘€))((π‘₯(.rβ€˜π‘Œ)𝑧)β€˜π‘€)))
5756mpteq2dva 5241 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ (𝑀 ∈ 𝐼 ↦ ((π‘₯β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))((𝑦(+gβ€˜π‘Œ)𝑧)β€˜π‘€))) = (𝑀 ∈ 𝐼 ↦ (((π‘₯(.rβ€˜π‘Œ)𝑦)β€˜π‘€)(+gβ€˜(π‘…β€˜π‘€))((π‘₯(.rβ€˜π‘Œ)𝑧)β€˜π‘€))))
58 simpr1 1191 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ π‘₯ ∈ (Baseβ€˜π‘Œ))
59 rnggrp 20063 . . . . . . . . . . 11 (π‘₯ ∈ Rng β†’ π‘₯ ∈ Grp)
6059grpmndd 18876 . . . . . . . . . 10 (π‘₯ ∈ Rng β†’ π‘₯ ∈ Mnd)
6160ssriv 3981 . . . . . . . . 9 Rng βŠ† Mnd
62 fss 6728 . . . . . . . . 9 ((𝑅:𝐼⟢Rng ∧ Rng βŠ† Mnd) β†’ 𝑅:𝐼⟢Mnd)
634, 61, 62sylancl 585 . . . . . . . 8 (πœ‘ β†’ 𝑅:𝐼⟢Mnd)
6463adantr 480 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ 𝑅:𝐼⟢Mnd)
651, 28, 49, 29, 31, 64, 38, 41prdsplusgcl 18698 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ (𝑦(+gβ€˜π‘Œ)𝑧) ∈ (Baseβ€˜π‘Œ))
661, 28, 29, 31, 33, 58, 65, 52prdsmulrval 17430 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ (π‘₯(.rβ€˜π‘Œ)(𝑦(+gβ€˜π‘Œ)𝑧)) = (𝑀 ∈ 𝐼 ↦ ((π‘₯β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))((𝑦(+gβ€˜π‘Œ)𝑧)β€˜π‘€))))
671, 28, 52, 29, 31, 26, 58, 38prdsmulrngcl 20080 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ (π‘₯(.rβ€˜π‘Œ)𝑦) ∈ (Baseβ€˜π‘Œ))
681, 28, 52, 29, 31, 26, 58, 41prdsmulrngcl 20080 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ (π‘₯(.rβ€˜π‘Œ)𝑧) ∈ (Baseβ€˜π‘Œ))
691, 28, 29, 31, 33, 67, 68, 49prdsplusgval 17428 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ ((π‘₯(.rβ€˜π‘Œ)𝑦)(+gβ€˜π‘Œ)(π‘₯(.rβ€˜π‘Œ)𝑧)) = (𝑀 ∈ 𝐼 ↦ (((π‘₯(.rβ€˜π‘Œ)𝑦)β€˜π‘€)(+gβ€˜(π‘…β€˜π‘€))((π‘₯(.rβ€˜π‘Œ)𝑧)β€˜π‘€))))
7057, 66, 693eqtr4d 2776 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ (π‘₯(.rβ€˜π‘Œ)(𝑦(+gβ€˜π‘Œ)𝑧)) = ((π‘₯(.rβ€˜π‘Œ)𝑦)(+gβ€˜π‘Œ)(π‘₯(.rβ€˜π‘Œ)𝑧)))
7144, 45, 46rngdir 20066 . . . . . . . 8 (((π‘…β€˜π‘€) ∈ Rng ∧ ((π‘₯β€˜π‘€) ∈ (Baseβ€˜(π‘…β€˜π‘€)) ∧ (π‘¦β€˜π‘€) ∈ (Baseβ€˜(π‘…β€˜π‘€)) ∧ (π‘§β€˜π‘€) ∈ (Baseβ€˜(π‘…β€˜π‘€)))) β†’ (((π‘₯β€˜π‘€)(+gβ€˜(π‘…β€˜π‘€))(π‘¦β€˜π‘€))(.rβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€)) = (((π‘₯β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€))(+gβ€˜(π‘…β€˜π‘€))((π‘¦β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€))))
7227, 37, 40, 43, 71syl13anc 1369 . . . . . . 7 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ (((π‘₯β€˜π‘€)(+gβ€˜(π‘…β€˜π‘€))(π‘¦β€˜π‘€))(.rβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€)) = (((π‘₯β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€))(+gβ€˜(π‘…β€˜π‘€))((π‘¦β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€))))
731, 28, 30, 32, 34, 35, 39, 49, 36prdsplusgfval 17429 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ ((π‘₯(+gβ€˜π‘Œ)𝑦)β€˜π‘€) = ((π‘₯β€˜π‘€)(+gβ€˜(π‘…β€˜π‘€))(π‘¦β€˜π‘€)))
7473oveq1d 7420 . . . . . . 7 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ (((π‘₯(+gβ€˜π‘Œ)𝑦)β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€)) = (((π‘₯β€˜π‘€)(+gβ€˜(π‘…β€˜π‘€))(π‘¦β€˜π‘€))(.rβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€)))
751, 28, 30, 32, 34, 39, 42, 52, 36prdsmulrfval 17431 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ ((𝑦(.rβ€˜π‘Œ)𝑧)β€˜π‘€) = ((π‘¦β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€)))
7654, 75oveq12d 7423 . . . . . . 7 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ (((π‘₯(.rβ€˜π‘Œ)𝑧)β€˜π‘€)(+gβ€˜(π‘…β€˜π‘€))((𝑦(.rβ€˜π‘Œ)𝑧)β€˜π‘€)) = (((π‘₯β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€))(+gβ€˜(π‘…β€˜π‘€))((π‘¦β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€))))
7772, 74, 763eqtr4d 2776 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) ∧ 𝑀 ∈ 𝐼) β†’ (((π‘₯(+gβ€˜π‘Œ)𝑦)β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€)) = (((π‘₯(.rβ€˜π‘Œ)𝑧)β€˜π‘€)(+gβ€˜(π‘…β€˜π‘€))((𝑦(.rβ€˜π‘Œ)𝑧)β€˜π‘€)))
7877mpteq2dva 5241 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ (𝑀 ∈ 𝐼 ↦ (((π‘₯(+gβ€˜π‘Œ)𝑦)β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€))) = (𝑀 ∈ 𝐼 ↦ (((π‘₯(.rβ€˜π‘Œ)𝑧)β€˜π‘€)(+gβ€˜(π‘…β€˜π‘€))((𝑦(.rβ€˜π‘Œ)𝑧)β€˜π‘€))))
791, 28, 49, 29, 31, 64, 58, 38prdsplusgcl 18698 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ (π‘₯(+gβ€˜π‘Œ)𝑦) ∈ (Baseβ€˜π‘Œ))
801, 28, 29, 31, 33, 79, 41, 52prdsmulrval 17430 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ ((π‘₯(+gβ€˜π‘Œ)𝑦)(.rβ€˜π‘Œ)𝑧) = (𝑀 ∈ 𝐼 ↦ (((π‘₯(+gβ€˜π‘Œ)𝑦)β€˜π‘€)(.rβ€˜(π‘…β€˜π‘€))(π‘§β€˜π‘€))))
811, 28, 52, 29, 31, 26, 38, 41prdsmulrngcl 20080 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ (𝑦(.rβ€˜π‘Œ)𝑧) ∈ (Baseβ€˜π‘Œ))
821, 28, 29, 31, 33, 68, 81, 49prdsplusgval 17428 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ ((π‘₯(.rβ€˜π‘Œ)𝑧)(+gβ€˜π‘Œ)(𝑦(.rβ€˜π‘Œ)𝑧)) = (𝑀 ∈ 𝐼 ↦ (((π‘₯(.rβ€˜π‘Œ)𝑧)β€˜π‘€)(+gβ€˜(π‘…β€˜π‘€))((𝑦(.rβ€˜π‘Œ)𝑧)β€˜π‘€))))
8378, 80, 823eqtr4d 2776 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ ((π‘₯(+gβ€˜π‘Œ)𝑦)(.rβ€˜π‘Œ)𝑧) = ((π‘₯(.rβ€˜π‘Œ)𝑧)(+gβ€˜π‘Œ)(𝑦(.rβ€˜π‘Œ)𝑧)))
8470, 83jca 511 . . 3 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘Œ) ∧ 𝑦 ∈ (Baseβ€˜π‘Œ) ∧ 𝑧 ∈ (Baseβ€˜π‘Œ))) β†’ ((π‘₯(.rβ€˜π‘Œ)(𝑦(+gβ€˜π‘Œ)𝑧)) = ((π‘₯(.rβ€˜π‘Œ)𝑦)(+gβ€˜π‘Œ)(π‘₯(.rβ€˜π‘Œ)𝑧)) ∧ ((π‘₯(+gβ€˜π‘Œ)𝑦)(.rβ€˜π‘Œ)𝑧) = ((π‘₯(.rβ€˜π‘Œ)𝑧)(+gβ€˜π‘Œ)(𝑦(.rβ€˜π‘Œ)𝑧))))
8584ralrimivvva 3197 . 2 (πœ‘ β†’ βˆ€π‘₯ ∈ (Baseβ€˜π‘Œ)βˆ€π‘¦ ∈ (Baseβ€˜π‘Œ)βˆ€π‘§ ∈ (Baseβ€˜π‘Œ)((π‘₯(.rβ€˜π‘Œ)(𝑦(+gβ€˜π‘Œ)𝑧)) = ((π‘₯(.rβ€˜π‘Œ)𝑦)(+gβ€˜π‘Œ)(π‘₯(.rβ€˜π‘Œ)𝑧)) ∧ ((π‘₯(+gβ€˜π‘Œ)𝑦)(.rβ€˜π‘Œ)𝑧) = ((π‘₯(.rβ€˜π‘Œ)𝑧)(+gβ€˜π‘Œ)(𝑦(.rβ€˜π‘Œ)𝑧))))
8628, 18, 49, 52isrng 20059 . 2 (π‘Œ ∈ Rng ↔ (π‘Œ ∈ Abel ∧ (mulGrpβ€˜π‘Œ) ∈ Smgrp ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘Œ)βˆ€π‘¦ ∈ (Baseβ€˜π‘Œ)βˆ€π‘§ ∈ (Baseβ€˜π‘Œ)((π‘₯(.rβ€˜π‘Œ)(𝑦(+gβ€˜π‘Œ)𝑧)) = ((π‘₯(.rβ€˜π‘Œ)𝑦)(+gβ€˜π‘Œ)(π‘₯(.rβ€˜π‘Œ)𝑧)) ∧ ((π‘₯(+gβ€˜π‘Œ)𝑦)(.rβ€˜π‘Œ)𝑧) = ((π‘₯(.rβ€˜π‘Œ)𝑧)(+gβ€˜π‘Œ)(𝑦(.rβ€˜π‘Œ)𝑧)))))
879, 25, 85, 86syl3anbrc 1340 1 (πœ‘ β†’ π‘Œ ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055  Vcvv 3468   βŠ† wss 3943   ↦ cmpt 5224   β†Ύ cres 5671   ∘ ccom 5673   Fn wfn 6532  βŸΆwf 6533  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153  +gcplusg 17206  .rcmulr 17207  Xscprds 17400  Smgrpcsgrp 18651  Mndcmnd 18667  Abelcabl 19701  mulGrpcmgp 20039  Rngcrng 20057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13491  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-plusg 17219  df-mulr 17220  df-sca 17222  df-vsca 17223  df-ip 17224  df-tset 17225  df-ple 17226  df-ds 17228  df-hom 17230  df-cco 17231  df-0g 17396  df-prds 17402  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18866  df-minusg 18867  df-cmn 19702  df-abl 19703  df-mgp 20040  df-rng 20058
This theorem is referenced by:  xpsrngd  20084
  Copyright terms: Public domain W3C validator