MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsrngd Structured version   Visualization version   GIF version

Theorem prdsrngd 20141
Description: A product of non-unital rings is a non-unital ring. (Contributed by AV, 22-Feb-2025.)
Hypotheses
Ref Expression
prdsrngd.y 𝑌 = (𝑆Xs𝑅)
prdsrngd.i (𝜑𝐼𝑊)
prdsrngd.s (𝜑𝑆𝑉)
prdsrngd.r (𝜑𝑅:𝐼⟶Rng)
Assertion
Ref Expression
prdsrngd (𝜑𝑌 ∈ Rng)

Proof of Theorem prdsrngd
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsrngd.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdsrngd.i . . 3 (𝜑𝐼𝑊)
3 prdsrngd.s . . 3 (𝜑𝑆𝑉)
4 prdsrngd.r . . . 4 (𝜑𝑅:𝐼⟶Rng)
5 rngabl 20120 . . . . 5 (𝑥 ∈ Rng → 𝑥 ∈ Abel)
65ssriv 3967 . . . 4 Rng ⊆ Abel
7 fss 6727 . . . 4 ((𝑅:𝐼⟶Rng ∧ Rng ⊆ Abel) → 𝑅:𝐼⟶Abel)
84, 6, 7sylancl 586 . . 3 (𝜑𝑅:𝐼⟶Abel)
91, 2, 3, 8prdsabld 19848 . 2 (𝜑𝑌 ∈ Abel)
10 eqid 2736 . . . 4 (𝑆Xs(mulGrp ∘ 𝑅)) = (𝑆Xs(mulGrp ∘ 𝑅))
11 rngmgpf 20122 . . . . 5 (mulGrp ↾ Rng):Rng⟶Smgrp
12 fco2 6737 . . . . 5 (((mulGrp ↾ Rng):Rng⟶Smgrp ∧ 𝑅:𝐼⟶Rng) → (mulGrp ∘ 𝑅):𝐼⟶Smgrp)
1311, 4, 12sylancr 587 . . . 4 (𝜑 → (mulGrp ∘ 𝑅):𝐼⟶Smgrp)
1410, 2, 3, 13prdssgrpd 18716 . . 3 (𝜑 → (𝑆Xs(mulGrp ∘ 𝑅)) ∈ Smgrp)
15 fvexd 6896 . . . 4 (𝜑 → (mulGrp‘𝑌) ∈ V)
16 ovexd 7445 . . . 4 (𝜑 → (𝑆Xs(mulGrp ∘ 𝑅)) ∈ V)
17 eqidd 2737 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
18 eqid 2736 . . . . . 6 (mulGrp‘𝑌) = (mulGrp‘𝑌)
194ffnd 6712 . . . . . 6 (𝜑𝑅 Fn 𝐼)
201, 18, 10, 2, 3, 19prdsmgp 20116 . . . . 5 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅)))))
2120simpld 494 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))))
2220simprd 495 . . . . 5 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅))))
2322oveqdr 7438 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘(𝑆Xs(mulGrp ∘ 𝑅)))𝑦))
2415, 16, 17, 21, 23sgrppropd 18714 . . 3 (𝜑 → ((mulGrp‘𝑌) ∈ Smgrp ↔ (𝑆Xs(mulGrp ∘ 𝑅)) ∈ Smgrp))
2514, 24mpbird 257 . 2 (𝜑 → (mulGrp‘𝑌) ∈ Smgrp)
264adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶Rng)
2726ffvelcdmda 7079 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (𝑅𝑤) ∈ Rng)
28 eqid 2736 . . . . . . . . 9 (Base‘𝑌) = (Base‘𝑌)
293adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑆𝑉)
3029adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑆𝑉)
312adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝐼𝑊)
3231adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝐼𝑊)
3319adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑅 Fn 𝐼)
3433adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑅 Fn 𝐼)
35 simplr1 1216 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑥 ∈ (Base‘𝑌))
36 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑤𝐼)
371, 28, 30, 32, 34, 35, 36prdsbasprj 17491 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (𝑥𝑤) ∈ (Base‘(𝑅𝑤)))
38 simpr2 1196 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑦 ∈ (Base‘𝑌))
3938adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑦 ∈ (Base‘𝑌))
401, 28, 30, 32, 34, 39, 36prdsbasprj 17491 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (𝑦𝑤) ∈ (Base‘(𝑅𝑤)))
41 simpr3 1197 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑧 ∈ (Base‘𝑌))
4241adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑧 ∈ (Base‘𝑌))
431, 28, 30, 32, 34, 42, 36prdsbasprj 17491 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (𝑧𝑤) ∈ (Base‘(𝑅𝑤)))
44 eqid 2736 . . . . . . . . 9 (Base‘(𝑅𝑤)) = (Base‘(𝑅𝑤))
45 eqid 2736 . . . . . . . . 9 (+g‘(𝑅𝑤)) = (+g‘(𝑅𝑤))
46 eqid 2736 . . . . . . . . 9 (.r‘(𝑅𝑤)) = (.r‘(𝑅𝑤))
4744, 45, 46rngdi 20125 . . . . . . . 8 (((𝑅𝑤) ∈ Rng ∧ ((𝑥𝑤) ∈ (Base‘(𝑅𝑤)) ∧ (𝑦𝑤) ∈ (Base‘(𝑅𝑤)) ∧ (𝑧𝑤) ∈ (Base‘(𝑅𝑤)))) → ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦𝑤)(+g‘(𝑅𝑤))(𝑧𝑤))) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑦𝑤))(+g‘(𝑅𝑤))((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
4827, 37, 40, 43, 47syl13anc 1374 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦𝑤)(+g‘(𝑅𝑤))(𝑧𝑤))) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑦𝑤))(+g‘(𝑅𝑤))((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
49 eqid 2736 . . . . . . . . 9 (+g𝑌) = (+g𝑌)
501, 28, 30, 32, 34, 39, 42, 49, 36prdsplusgfval 17493 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑦(+g𝑌)𝑧)‘𝑤) = ((𝑦𝑤)(+g‘(𝑅𝑤))(𝑧𝑤)))
5150oveq2d 7426 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦(+g𝑌)𝑧)‘𝑤)) = ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦𝑤)(+g‘(𝑅𝑤))(𝑧𝑤))))
52 eqid 2736 . . . . . . . . 9 (.r𝑌) = (.r𝑌)
531, 28, 30, 32, 34, 35, 39, 52, 36prdsmulrfval 17495 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥(.r𝑌)𝑦)‘𝑤) = ((𝑥𝑤)(.r‘(𝑅𝑤))(𝑦𝑤)))
541, 28, 30, 32, 34, 35, 42, 52, 36prdsmulrfval 17495 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥(.r𝑌)𝑧)‘𝑤) = ((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤)))
5553, 54oveq12d 7428 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥(.r𝑌)𝑦)‘𝑤)(+g‘(𝑅𝑤))((𝑥(.r𝑌)𝑧)‘𝑤)) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑦𝑤))(+g‘(𝑅𝑤))((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
5648, 51, 553eqtr4d 2781 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦(+g𝑌)𝑧)‘𝑤)) = (((𝑥(.r𝑌)𝑦)‘𝑤)(+g‘(𝑅𝑤))((𝑥(.r𝑌)𝑧)‘𝑤)))
5756mpteq2dva 5219 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑤𝐼 ↦ ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦(+g𝑌)𝑧)‘𝑤))) = (𝑤𝐼 ↦ (((𝑥(.r𝑌)𝑦)‘𝑤)(+g‘(𝑅𝑤))((𝑥(.r𝑌)𝑧)‘𝑤))))
58 simpr1 1195 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑥 ∈ (Base‘𝑌))
59 rnggrp 20123 . . . . . . . . . . 11 (𝑥 ∈ Rng → 𝑥 ∈ Grp)
6059grpmndd 18934 . . . . . . . . . 10 (𝑥 ∈ Rng → 𝑥 ∈ Mnd)
6160ssriv 3967 . . . . . . . . 9 Rng ⊆ Mnd
62 fss 6727 . . . . . . . . 9 ((𝑅:𝐼⟶Rng ∧ Rng ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
634, 61, 62sylancl 586 . . . . . . . 8 (𝜑𝑅:𝐼⟶Mnd)
6463adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶Mnd)
651, 28, 49, 29, 31, 64, 38, 41prdsplusgcl 18751 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑦(+g𝑌)𝑧) ∈ (Base‘𝑌))
661, 28, 29, 31, 33, 58, 65, 52prdsmulrval 17494 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = (𝑤𝐼 ↦ ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦(+g𝑌)𝑧)‘𝑤))))
671, 28, 52, 29, 31, 26, 58, 38prdsmulrngcl 20140 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r𝑌)𝑦) ∈ (Base‘𝑌))
681, 28, 52, 29, 31, 26, 58, 41prdsmulrngcl 20140 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r𝑌)𝑧) ∈ (Base‘𝑌))
691, 28, 29, 31, 33, 67, 68, 49prdsplusgval 17492 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)) = (𝑤𝐼 ↦ (((𝑥(.r𝑌)𝑦)‘𝑤)(+g‘(𝑅𝑤))((𝑥(.r𝑌)𝑧)‘𝑤))))
7057, 66, 693eqtr4d 2781 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)))
7144, 45, 46rngdir 20126 . . . . . . . 8 (((𝑅𝑤) ∈ Rng ∧ ((𝑥𝑤) ∈ (Base‘(𝑅𝑤)) ∧ (𝑦𝑤) ∈ (Base‘(𝑅𝑤)) ∧ (𝑧𝑤) ∈ (Base‘(𝑅𝑤)))) → (((𝑥𝑤)(+g‘(𝑅𝑤))(𝑦𝑤))(.r‘(𝑅𝑤))(𝑧𝑤)) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))(+g‘(𝑅𝑤))((𝑦𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
7227, 37, 40, 43, 71syl13anc 1374 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥𝑤)(+g‘(𝑅𝑤))(𝑦𝑤))(.r‘(𝑅𝑤))(𝑧𝑤)) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))(+g‘(𝑅𝑤))((𝑦𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
731, 28, 30, 32, 34, 35, 39, 49, 36prdsplusgfval 17493 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥(+g𝑌)𝑦)‘𝑤) = ((𝑥𝑤)(+g‘(𝑅𝑤))(𝑦𝑤)))
7473oveq1d 7425 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥(+g𝑌)𝑦)‘𝑤)(.r‘(𝑅𝑤))(𝑧𝑤)) = (((𝑥𝑤)(+g‘(𝑅𝑤))(𝑦𝑤))(.r‘(𝑅𝑤))(𝑧𝑤)))
751, 28, 30, 32, 34, 39, 42, 52, 36prdsmulrfval 17495 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑦(.r𝑌)𝑧)‘𝑤) = ((𝑦𝑤)(.r‘(𝑅𝑤))(𝑧𝑤)))
7654, 75oveq12d 7428 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥(.r𝑌)𝑧)‘𝑤)(+g‘(𝑅𝑤))((𝑦(.r𝑌)𝑧)‘𝑤)) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))(+g‘(𝑅𝑤))((𝑦𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
7772, 74, 763eqtr4d 2781 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥(+g𝑌)𝑦)‘𝑤)(.r‘(𝑅𝑤))(𝑧𝑤)) = (((𝑥(.r𝑌)𝑧)‘𝑤)(+g‘(𝑅𝑤))((𝑦(.r𝑌)𝑧)‘𝑤)))
7877mpteq2dva 5219 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑤𝐼 ↦ (((𝑥(+g𝑌)𝑦)‘𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))) = (𝑤𝐼 ↦ (((𝑥(.r𝑌)𝑧)‘𝑤)(+g‘(𝑅𝑤))((𝑦(.r𝑌)𝑧)‘𝑤))))
791, 28, 49, 29, 31, 64, 58, 38prdsplusgcl 18751 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(+g𝑌)𝑦) ∈ (Base‘𝑌))
801, 28, 29, 31, 33, 79, 41, 52prdsmulrval 17494 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = (𝑤𝐼 ↦ (((𝑥(+g𝑌)𝑦)‘𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
811, 28, 52, 29, 31, 26, 38, 41prdsmulrngcl 20140 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑦(.r𝑌)𝑧) ∈ (Base‘𝑌))
821, 28, 29, 31, 33, 68, 81, 49prdsplusgval 17492 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧)) = (𝑤𝐼 ↦ (((𝑥(.r𝑌)𝑧)‘𝑤)(+g‘(𝑅𝑤))((𝑦(.r𝑌)𝑧)‘𝑤))))
8378, 80, 823eqtr4d 2781 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧)))
8470, 83jca 511 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)) ∧ ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧))))
8584ralrimivvva 3191 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)∀𝑧 ∈ (Base‘𝑌)((𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)) ∧ ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧))))
8628, 18, 49, 52isrng 20119 . 2 (𝑌 ∈ Rng ↔ (𝑌 ∈ Abel ∧ (mulGrp‘𝑌) ∈ Smgrp ∧ ∀𝑥 ∈ (Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)∀𝑧 ∈ (Base‘𝑌)((𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)) ∧ ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧)))))
879, 25, 85, 86syl3anbrc 1344 1 (𝜑𝑌 ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  wss 3931  cmpt 5206  cres 5661  ccom 5663   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  Xscprds 17464  Smgrpcsgrp 18701  Mndcmnd 18717  Abelcabl 19767  mulGrpcmgp 20105  Rngcrng 20117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-prds 17466  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118
This theorem is referenced by:  xpsrngd  20144
  Copyright terms: Public domain W3C validator