Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shatomici | Structured version Visualization version GIF version |
Description: The lattice of Hilbert subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shatomic.1 | ⊢ 𝐴 ∈ Sℋ |
Ref | Expression |
---|---|
shatomici | ⊢ (𝐴 ≠ 0ℋ → ∃𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shatomic.1 | . . 3 ⊢ 𝐴 ∈ Sℋ | |
2 | 1 | shne0i 29918 | . 2 ⊢ (𝐴 ≠ 0ℋ ↔ ∃𝑦 ∈ 𝐴 𝑦 ≠ 0ℎ) |
3 | 1 | sheli 29684 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ) |
4 | h1da 30819 | . . . . 5 ⊢ ((𝑦 ∈ ℋ ∧ 𝑦 ≠ 0ℎ) → (⊥‘(⊥‘{𝑦})) ∈ HAtoms) | |
5 | 3, 4 | sylan 580 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (⊥‘(⊥‘{𝑦})) ∈ HAtoms) |
6 | sh1dle 30821 | . . . . . 6 ⊢ ((𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴) → (⊥‘(⊥‘{𝑦})) ⊆ 𝐴) | |
7 | 1, 6 | mpan 687 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → (⊥‘(⊥‘{𝑦})) ⊆ 𝐴) |
8 | 7 | adantr 481 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (⊥‘(⊥‘{𝑦})) ⊆ 𝐴) |
9 | sseq1 3955 | . . . . 5 ⊢ (𝑥 = (⊥‘(⊥‘{𝑦})) → (𝑥 ⊆ 𝐴 ↔ (⊥‘(⊥‘{𝑦})) ⊆ 𝐴)) | |
10 | 9 | rspcev 3570 | . . . 4 ⊢ (((⊥‘(⊥‘{𝑦})) ∈ HAtoms ∧ (⊥‘(⊥‘{𝑦})) ⊆ 𝐴) → ∃𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴) |
11 | 5, 8, 10 | syl2anc 584 | . . 3 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → ∃𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴) |
12 | 11 | rexlimiva 3141 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝑦 ≠ 0ℎ → ∃𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴) |
13 | 2, 12 | sylbi 216 | 1 ⊢ (𝐴 ≠ 0ℋ → ∃𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 ≠ wne 2941 ∃wrex 3071 ⊆ wss 3896 {csn 4569 ‘cfv 6463 ℋchba 29389 0ℎc0v 29394 Sℋ csh 29398 ⊥cort 29400 0ℋc0h 29405 HAtomscat 29435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-inf2 9467 ax-cc 10261 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-pre-sup 11019 ax-addf 11020 ax-mulf 11021 ax-hilex 29469 ax-hfvadd 29470 ax-hvcom 29471 ax-hvass 29472 ax-hv0cl 29473 ax-hvaddid 29474 ax-hfvmul 29475 ax-hvmulid 29476 ax-hvmulass 29477 ax-hvdistr1 29478 ax-hvdistr2 29479 ax-hvmul0 29480 ax-hfi 29549 ax-his1 29552 ax-his2 29553 ax-his3 29554 ax-his4 29555 ax-hcompl 29672 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-iin 4938 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-se 5561 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-isom 6472 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-of 7571 df-om 7756 df-1st 7874 df-2nd 7875 df-supp 8023 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-2o 8343 df-oadd 8346 df-omul 8347 df-er 8544 df-map 8663 df-pm 8664 df-ixp 8732 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-fsupp 9197 df-fi 9238 df-sup 9269 df-inf 9270 df-oi 9337 df-card 9765 df-acn 9768 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-7 12111 df-8 12112 df-9 12113 df-n0 12304 df-z 12390 df-dec 12508 df-uz 12653 df-q 12759 df-rp 12801 df-xneg 12918 df-xadd 12919 df-xmul 12920 df-ioo 13153 df-ico 13155 df-icc 13156 df-fz 13310 df-fzo 13453 df-fl 13582 df-seq 13792 df-exp 13853 df-hash 14115 df-cj 14879 df-re 14880 df-im 14881 df-sqrt 15015 df-abs 15016 df-clim 15266 df-rlim 15267 df-sum 15467 df-struct 16915 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-mulr 17043 df-starv 17044 df-sca 17045 df-vsca 17046 df-ip 17047 df-tset 17048 df-ple 17049 df-ds 17051 df-unif 17052 df-hom 17053 df-cco 17054 df-rest 17200 df-topn 17201 df-0g 17219 df-gsum 17220 df-topgen 17221 df-pt 17222 df-prds 17225 df-xrs 17280 df-qtop 17285 df-imas 17286 df-xps 17288 df-mre 17362 df-mrc 17363 df-acs 17365 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-submnd 18498 df-mulg 18768 df-cntz 18990 df-cmn 19455 df-psmet 20660 df-xmet 20661 df-met 20662 df-bl 20663 df-mopn 20664 df-fbas 20665 df-fg 20666 df-cnfld 20669 df-top 22114 df-topon 22131 df-topsp 22153 df-bases 22167 df-cld 22241 df-ntr 22242 df-cls 22243 df-nei 22320 df-cn 22449 df-cnp 22450 df-lm 22451 df-haus 22537 df-tx 22784 df-hmeo 22977 df-fil 23068 df-fm 23160 df-flim 23161 df-flf 23162 df-xms 23544 df-ms 23545 df-tms 23546 df-cfil 24490 df-cau 24491 df-cmet 24492 df-grpo 28963 df-gid 28964 df-ginv 28965 df-gdiv 28966 df-ablo 29015 df-vc 29029 df-nv 29062 df-va 29065 df-ba 29066 df-sm 29067 df-0v 29068 df-vs 29069 df-nmcv 29070 df-ims 29071 df-dip 29171 df-ssp 29192 df-ph 29283 df-cbn 29333 df-hnorm 29438 df-hba 29439 df-hvsub 29441 df-hlim 29442 df-hcau 29443 df-sh 29677 df-ch 29691 df-oc 29722 df-ch0 29723 df-span 29779 df-cv 30749 df-at 30808 |
This theorem is referenced by: hatomici 30829 |
Copyright terms: Public domain | W3C validator |