| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp13r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp13r | ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1203 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pceu 16758 axpasch 28920 3dimlem4 39509 3atlem4 39531 llncvrlpln2 39602 2lplnja 39664 lhpmcvr5N 40072 4atexlemswapqr 40108 4atexlemnclw 40115 trlval2 40208 cdleme21h 40379 cdleme24 40397 cdleme26ee 40405 cdleme26f 40408 cdleme26f2 40410 cdlemf1 40606 cdlemg16ALTN 40703 cdlemg17iqN 40719 cdlemg27b 40741 trlcone 40773 cdlemg48 40782 tendocan 40869 cdlemk26-3 40951 cdlemk27-3 40952 cdlemk28-3 40953 cdlemk37 40959 cdlemky 40971 cdlemk11ta 40974 cdlemkid3N 40978 cdlemk11t 40991 cdlemk46 40993 cdlemk47 40994 cdlemk51 40998 cdlemk52 40999 cdleml4N 41024 dihmeetlem1N 41335 dihmeetlem20N 41371 mapdpglem32 41750 addlimc 45692 iscnrm3rlem8 48984 |
| Copyright terms: Public domain | W3C validator |