Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp13r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp13r | ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3r 1200 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant1 1131 | 1 ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: pceu 16475 axpasch 27212 3dimlem4 37405 3atlem4 37427 llncvrlpln2 37498 2lplnja 37560 lhpmcvr5N 37968 4atexlemswapqr 38004 4atexlemnclw 38011 trlval2 38104 cdleme21h 38275 cdleme24 38293 cdleme26ee 38301 cdleme26f 38304 cdleme26f2 38306 cdlemf1 38502 cdlemg16ALTN 38599 cdlemg17iqN 38615 cdlemg27b 38637 trlcone 38669 cdlemg48 38678 tendocan 38765 cdlemk26-3 38847 cdlemk27-3 38848 cdlemk28-3 38849 cdlemk37 38855 cdlemky 38867 cdlemk11ta 38870 cdlemkid3N 38874 cdlemk11t 38887 cdlemk46 38889 cdlemk47 38890 cdlemk51 38894 cdlemk52 38895 cdleml4N 38920 dihmeetlem1N 39231 dihmeetlem20N 39267 mapdpglem32 39646 addlimc 43079 iscnrm3rlem8 46129 |
Copyright terms: Public domain | W3C validator |