| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp13r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp13r | ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1203 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pceu 16817 axpasch 28868 3dimlem4 39458 3atlem4 39480 llncvrlpln2 39551 2lplnja 39613 lhpmcvr5N 40021 4atexlemswapqr 40057 4atexlemnclw 40064 trlval2 40157 cdleme21h 40328 cdleme24 40346 cdleme26ee 40354 cdleme26f 40357 cdleme26f2 40359 cdlemf1 40555 cdlemg16ALTN 40652 cdlemg17iqN 40668 cdlemg27b 40690 trlcone 40722 cdlemg48 40731 tendocan 40818 cdlemk26-3 40900 cdlemk27-3 40901 cdlemk28-3 40902 cdlemk37 40908 cdlemky 40920 cdlemk11ta 40923 cdlemkid3N 40927 cdlemk11t 40940 cdlemk46 40942 cdlemk47 40943 cdlemk51 40947 cdlemk52 40948 cdleml4N 40973 dihmeetlem1N 41284 dihmeetlem20N 41320 mapdpglem32 41699 addlimc 45646 iscnrm3rlem8 48935 |
| Copyright terms: Public domain | W3C validator |