![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp13r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp13r | ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3r 1201 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: pceu 16879 axpasch 28970 3dimlem4 39446 3atlem4 39468 llncvrlpln2 39539 2lplnja 39601 lhpmcvr5N 40009 4atexlemswapqr 40045 4atexlemnclw 40052 trlval2 40145 cdleme21h 40316 cdleme24 40334 cdleme26ee 40342 cdleme26f 40345 cdleme26f2 40347 cdlemf1 40543 cdlemg16ALTN 40640 cdlemg17iqN 40656 cdlemg27b 40678 trlcone 40710 cdlemg48 40719 tendocan 40806 cdlemk26-3 40888 cdlemk27-3 40889 cdlemk28-3 40890 cdlemk37 40896 cdlemky 40908 cdlemk11ta 40911 cdlemkid3N 40915 cdlemk11t 40928 cdlemk46 40930 cdlemk47 40931 cdlemk51 40935 cdlemk52 40936 cdleml4N 40961 dihmeetlem1N 41272 dihmeetlem20N 41308 mapdpglem32 41687 addlimc 45603 iscnrm3rlem8 48743 |
Copyright terms: Public domain | W3C validator |