| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp13r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp13r | ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1203 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pceu 16824 axpasch 28875 3dimlem4 39465 3atlem4 39487 llncvrlpln2 39558 2lplnja 39620 lhpmcvr5N 40028 4atexlemswapqr 40064 4atexlemnclw 40071 trlval2 40164 cdleme21h 40335 cdleme24 40353 cdleme26ee 40361 cdleme26f 40364 cdleme26f2 40366 cdlemf1 40562 cdlemg16ALTN 40659 cdlemg17iqN 40675 cdlemg27b 40697 trlcone 40729 cdlemg48 40738 tendocan 40825 cdlemk26-3 40907 cdlemk27-3 40908 cdlemk28-3 40909 cdlemk37 40915 cdlemky 40927 cdlemk11ta 40930 cdlemkid3N 40934 cdlemk11t 40947 cdlemk46 40949 cdlemk47 40950 cdlemk51 40954 cdlemk52 40955 cdleml4N 40980 dihmeetlem1N 41291 dihmeetlem20N 41327 mapdpglem32 41706 addlimc 45653 iscnrm3rlem8 48939 |
| Copyright terms: Public domain | W3C validator |