| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp13r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp13r | ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1203 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pceu 16762 axpasch 28923 3dimlem4 39586 3atlem4 39608 llncvrlpln2 39679 2lplnja 39741 lhpmcvr5N 40149 4atexlemswapqr 40185 4atexlemnclw 40192 trlval2 40285 cdleme21h 40456 cdleme24 40474 cdleme26ee 40482 cdleme26f 40485 cdleme26f2 40487 cdlemf1 40683 cdlemg16ALTN 40780 cdlemg17iqN 40796 cdlemg27b 40818 trlcone 40850 cdlemg48 40859 tendocan 40946 cdlemk26-3 41028 cdlemk27-3 41029 cdlemk28-3 41030 cdlemk37 41036 cdlemky 41048 cdlemk11ta 41051 cdlemkid3N 41055 cdlemk11t 41068 cdlemk46 41070 cdlemk47 41071 cdlemk51 41075 cdlemk52 41076 cdleml4N 41101 dihmeetlem1N 41412 dihmeetlem20N 41448 mapdpglem32 41827 addlimc 45773 iscnrm3rlem8 49074 |
| Copyright terms: Public domain | W3C validator |