![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp13r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp13r | ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3r 1202 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: pceu 16893 axpasch 28974 3dimlem4 39421 3atlem4 39443 llncvrlpln2 39514 2lplnja 39576 lhpmcvr5N 39984 4atexlemswapqr 40020 4atexlemnclw 40027 trlval2 40120 cdleme21h 40291 cdleme24 40309 cdleme26ee 40317 cdleme26f 40320 cdleme26f2 40322 cdlemf1 40518 cdlemg16ALTN 40615 cdlemg17iqN 40631 cdlemg27b 40653 trlcone 40685 cdlemg48 40694 tendocan 40781 cdlemk26-3 40863 cdlemk27-3 40864 cdlemk28-3 40865 cdlemk37 40871 cdlemky 40883 cdlemk11ta 40886 cdlemkid3N 40890 cdlemk11t 40903 cdlemk46 40905 cdlemk47 40906 cdlemk51 40910 cdlemk52 40911 cdleml4N 40936 dihmeetlem1N 41247 dihmeetlem20N 41283 mapdpglem32 41662 addlimc 45569 iscnrm3rlem8 48627 |
Copyright terms: Public domain | W3C validator |