Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp13r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp13r | ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3r 1201 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: pceu 16547 axpasch 27309 3dimlem4 37478 3atlem4 37500 llncvrlpln2 37571 2lplnja 37633 lhpmcvr5N 38041 4atexlemswapqr 38077 4atexlemnclw 38084 trlval2 38177 cdleme21h 38348 cdleme24 38366 cdleme26ee 38374 cdleme26f 38377 cdleme26f2 38379 cdlemf1 38575 cdlemg16ALTN 38672 cdlemg17iqN 38688 cdlemg27b 38710 trlcone 38742 cdlemg48 38751 tendocan 38838 cdlemk26-3 38920 cdlemk27-3 38921 cdlemk28-3 38922 cdlemk37 38928 cdlemky 38940 cdlemk11ta 38943 cdlemkid3N 38947 cdlemk11t 38960 cdlemk46 38962 cdlemk47 38963 cdlemk51 38967 cdlemk52 38968 cdleml4N 38993 dihmeetlem1N 39304 dihmeetlem20N 39340 mapdpglem32 39719 addlimc 43189 iscnrm3rlem8 46241 |
Copyright terms: Public domain | W3C validator |