| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp13r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp13r | ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1203 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pceu 16866 axpasch 28920 3dimlem4 39483 3atlem4 39505 llncvrlpln2 39576 2lplnja 39638 lhpmcvr5N 40046 4atexlemswapqr 40082 4atexlemnclw 40089 trlval2 40182 cdleme21h 40353 cdleme24 40371 cdleme26ee 40379 cdleme26f 40382 cdleme26f2 40384 cdlemf1 40580 cdlemg16ALTN 40677 cdlemg17iqN 40693 cdlemg27b 40715 trlcone 40747 cdlemg48 40756 tendocan 40843 cdlemk26-3 40925 cdlemk27-3 40926 cdlemk28-3 40927 cdlemk37 40933 cdlemky 40945 cdlemk11ta 40948 cdlemkid3N 40952 cdlemk11t 40965 cdlemk46 40967 cdlemk47 40968 cdlemk51 40972 cdlemk52 40973 cdleml4N 40998 dihmeetlem1N 41309 dihmeetlem20N 41345 mapdpglem32 41724 addlimc 45677 iscnrm3rlem8 48921 |
| Copyright terms: Public domain | W3C validator |