Step | Hyp | Ref
| Expression |
1 | | mapdpg.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | mapdpg.m |
. . . 4
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
3 | | mapdpg.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
4 | | mapdpg.v |
. . . 4
⊢ 𝑉 = (Base‘𝑈) |
5 | | mapdpg.s |
. . . 4
⊢ − =
(-g‘𝑈) |
6 | | mapdpg.z |
. . . 4
⊢ 0 =
(0g‘𝑈) |
7 | | mapdpg.n |
. . . 4
⊢ 𝑁 = (LSpan‘𝑈) |
8 | | mapdpg.c |
. . . 4
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
9 | | mapdpg.f |
. . . 4
⊢ 𝐹 = (Base‘𝐶) |
10 | | mapdpg.r |
. . . 4
⊢ 𝑅 = (-g‘𝐶) |
11 | | mapdpg.j |
. . . 4
⊢ 𝐽 = (LSpan‘𝐶) |
12 | | mapdpg.k |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
13 | 12 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
14 | | mapdpg.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
15 | 14 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
16 | | mapdpg.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
17 | 16 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
18 | | mapdpg.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
19 | 18 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝐺 ∈ 𝐹) |
20 | | mapdpg.ne |
. . . . 5
⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
21 | 20 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
22 | | mapdpg.e |
. . . . 5
⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
23 | 22 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
24 | | simp2l 1199 |
. . . . 5
⊢ ((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ℎ ∈ 𝐹) |
25 | | simp3l 1201 |
. . . . 5
⊢ ((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)}))) |
26 | 24, 25 | jca 513 |
. . . 4
⊢ ((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (ℎ ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})))) |
27 | | simp2r 1200 |
. . . . 5
⊢ ((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝑖 ∈ 𝐹) |
28 | | simp3r 1202 |
. . . . 5
⊢ ((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))) |
29 | 27, 28 | jca 513 |
. . . 4
⊢ ((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝑖 ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) |
30 | | eqid 2736 |
. . . 4
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) |
31 | | eqid 2736 |
. . . 4
⊢
(Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) |
32 | | eqid 2736 |
. . . 4
⊢ (
·𝑠 ‘𝐶) = ( ·𝑠
‘𝐶) |
33 | | eqid 2736 |
. . . 4
⊢
(0g‘(Scalar‘𝑈)) =
(0g‘(Scalar‘𝑈)) |
34 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 13, 15, 17, 19, 21, 23, 26, 29, 30, 31, 32, 33 | mapdpglem26 39754 |
. . 3
⊢ ((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})ℎ = (𝑢( ·𝑠
‘𝐶)𝑖)) |
35 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 13, 15, 17, 19, 21, 23, 26, 29, 30, 31, 32, 33 | mapdpglem27 39755 |
. . 3
⊢ ((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})(𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖))) |
36 | | reeanv 3214 |
. . 3
⊢
(∃𝑢 ∈
((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})(ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖))) ↔ (∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ ∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})(𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖)))) |
37 | 34, 35, 36 | sylanbrc 584 |
. 2
⊢ ((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})(ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖)))) |
38 | 13 | 3ad2ant1 1133 |
. . . . 5
⊢ (((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) ∧ (ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
39 | 15 | 3ad2ant1 1133 |
. . . . 5
⊢ (((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) ∧ (ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖)))) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
40 | 17 | 3ad2ant1 1133 |
. . . . 5
⊢ (((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) ∧ (ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖)))) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
41 | 19 | 3ad2ant1 1133 |
. . . . 5
⊢ (((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) ∧ (ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖)))) → 𝐺 ∈ 𝐹) |
42 | 21 | 3ad2ant1 1133 |
. . . . 5
⊢ (((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) ∧ (ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖)))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
43 | 23 | 3ad2ant1 1133 |
. . . . 5
⊢ (((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) ∧ (ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖)))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
44 | | simp12l 1286 |
. . . . . 6
⊢ (((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) ∧ (ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖)))) → ℎ ∈ 𝐹) |
45 | | simp13l 1288 |
. . . . . 6
⊢ (((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) ∧ (ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖)))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)}))) |
46 | 44, 45 | jca 513 |
. . . . 5
⊢ (((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) ∧ (ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖)))) → (ℎ ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})))) |
47 | | simp12r 1287 |
. . . . . 6
⊢ (((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) ∧ (ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖)))) → 𝑖 ∈ 𝐹) |
48 | | simp13r 1289 |
. . . . . 6
⊢ (((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) ∧ (ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖)))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))) |
49 | 47, 48 | jca 513 |
. . . . 5
⊢ (((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) ∧ (ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖)))) → (𝑖 ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) |
50 | | eldifi 4067 |
. . . . . . 7
⊢ (𝑣 ∈
((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) → 𝑣 ∈ (Base‘(Scalar‘𝑈))) |
51 | 50 | adantl 483 |
. . . . . 6
⊢ ((𝑢 ∈
((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) → 𝑣 ∈ (Base‘(Scalar‘𝑈))) |
52 | 51 | 3ad2ant2 1134 |
. . . . 5
⊢ (((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) ∧ (ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖)))) → 𝑣 ∈ (Base‘(Scalar‘𝑈))) |
53 | | simp3l 1201 |
. . . . 5
⊢ (((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) ∧ (ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖)))) → ℎ = (𝑢( ·𝑠
‘𝐶)𝑖)) |
54 | | simp3r 1202 |
. . . . 5
⊢ (((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) ∧ (ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖)))) → (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖))) |
55 | | eldifi 4067 |
. . . . . . 7
⊢ (𝑢 ∈
((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) → 𝑢 ∈ (Base‘(Scalar‘𝑈))) |
56 | 55 | adantr 482 |
. . . . . 6
⊢ ((𝑢 ∈
((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) → 𝑢 ∈ (Base‘(Scalar‘𝑈))) |
57 | 56 | 3ad2ant2 1134 |
. . . . 5
⊢ (((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) ∧ (ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖)))) → 𝑢 ∈ (Base‘(Scalar‘𝑈))) |
58 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 38, 39, 40, 41, 42, 43, 46, 49, 30, 31, 32, 33, 52, 53, 54, 57 | mapdpglem31 39759 |
. . . 4
⊢ (((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) ∧ (ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖)))) → ℎ = 𝑖) |
59 | 58 | 3exp 1119 |
. . 3
⊢ ((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ((𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})) → ((ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖))) → ℎ = 𝑖))) |
60 | 59 | rexlimdvv 3201 |
. 2
⊢ ((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖
{(0g‘(Scalar‘𝑈))})(ℎ = (𝑢( ·𝑠
‘𝐶)𝑖) ∧ (𝐺𝑅ℎ) = (𝑣( ·𝑠
‘𝐶)(𝐺𝑅𝑖))) → ℎ = 𝑖)) |
61 | 37, 60 | mpd 15 |
1
⊢ ((𝜑 ∧ (ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ℎ = 𝑖) |