Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem32 Structured version   Visualization version   GIF version

Theorem mapdpglem32 39000
Description: Lemma for mapdpg 39001. Uniqueness part - consolidate hypotheses in mapdpglem31 38998. (Contributed by NM, 23-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h 𝐻 = (LHyp‘𝐾)
mapdpg.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpg.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpg.v 𝑉 = (Base‘𝑈)
mapdpg.s = (-g𝑈)
mapdpg.z 0 = (0g𝑈)
mapdpg.n 𝑁 = (LSpan‘𝑈)
mapdpg.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpg.f 𝐹 = (Base‘𝐶)
mapdpg.r 𝑅 = (-g𝐶)
mapdpg.j 𝐽 = (LSpan‘𝐶)
mapdpg.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpg.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdpg.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdpg.g (𝜑𝐺𝐹)
mapdpg.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpg.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
Assertion
Ref Expression
mapdpglem32 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → = 𝑖)
Distinct variable groups:   𝐶,   ,𝐹   ,𝐺   ,𝐽   ,𝑀   ,𝑁   𝑅,   ,   𝑈,   ,𝑋   ,𝑌   ,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐶(𝑖)   𝑅(𝑖)   𝑈(𝑖)   𝐹(𝑖)   𝐺(𝑖)   𝐻(,𝑖)   𝐽(𝑖)   𝐾(,𝑖)   𝑀(𝑖)   (𝑖)   𝑁(𝑖)   𝑉(,𝑖)   𝑊(,𝑖)   𝑋(𝑖)   𝑌(𝑖)   0 (,𝑖)

Proof of Theorem mapdpglem32
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdpg.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdpg.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdpg.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdpg.v . . . 4 𝑉 = (Base‘𝑈)
5 mapdpg.s . . . 4 = (-g𝑈)
6 mapdpg.z . . . 4 0 = (0g𝑈)
7 mapdpg.n . . . 4 𝑁 = (LSpan‘𝑈)
8 mapdpg.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
9 mapdpg.f . . . 4 𝐹 = (Base‘𝐶)
10 mapdpg.r . . . 4 𝑅 = (-g𝐶)
11 mapdpg.j . . . 4 𝐽 = (LSpan‘𝐶)
12 mapdpg.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
13123ad2ant1 1130 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 mapdpg.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
15143ad2ant1 1130 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
16 mapdpg.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
17163ad2ant1 1130 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
18 mapdpg.g . . . . 5 (𝜑𝐺𝐹)
19183ad2ant1 1130 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝐺𝐹)
20 mapdpg.ne . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
21203ad2ant1 1130 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
22 mapdpg.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
23223ad2ant1 1130 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
24 simp2l 1196 . . . . 5 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝐹)
25 simp3l 1198 . . . . 5 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
2624, 25jca 515 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
27 simp2r 1197 . . . . 5 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝑖𝐹)
28 simp3r 1199 . . . . 5 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))
2927, 28jca 515 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
30 eqid 2801 . . . 4 (Scalar‘𝑈) = (Scalar‘𝑈)
31 eqid 2801 . . . 4 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
32 eqid 2801 . . . 4 ( ·𝑠𝐶) = ( ·𝑠𝐶)
33 eqid 2801 . . . 4 (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈))
341, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 26, 29, 30, 31, 32, 33mapdpglem26 38993 . . 3 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) = (𝑢( ·𝑠𝐶)𝑖))
351, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 26, 29, 30, 31, 32, 33mapdpglem27 38994 . . 3 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})(𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))
36 reeanv 3323 . . 3 (∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))) ↔ (∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) = (𝑢( ·𝑠𝐶)𝑖) ∧ ∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})(𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))))
3734, 35, 36sylanbrc 586 . 2 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))))
38133ad2ant1 1130 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
39153ad2ant1 1130 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
40173ad2ant1 1130 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
41193ad2ant1 1130 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝐺𝐹)
42213ad2ant1 1130 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
43233ad2ant1 1130 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
44 simp12l 1283 . . . . . 6 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝐹)
45 simp13l 1285 . . . . . 6 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
4644, 45jca 515 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
47 simp12r 1284 . . . . . 6 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑖𝐹)
48 simp13r 1286 . . . . . 6 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))
4947, 48jca 515 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
50 eldifi 4057 . . . . . . 7 (𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) → 𝑣 ∈ (Base‘(Scalar‘𝑈)))
5150adantl 485 . . . . . 6 ((𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) → 𝑣 ∈ (Base‘(Scalar‘𝑈)))
52513ad2ant2 1131 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑣 ∈ (Base‘(Scalar‘𝑈)))
53 simp3l 1198 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → = (𝑢( ·𝑠𝐶)𝑖))
54 simp3r 1199 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))
55 eldifi 4057 . . . . . . 7 (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) → 𝑢 ∈ (Base‘(Scalar‘𝑈)))
5655adantr 484 . . . . . 6 ((𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) → 𝑢 ∈ (Base‘(Scalar‘𝑈)))
57563ad2ant2 1131 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑢 ∈ (Base‘(Scalar‘𝑈)))
581, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 38, 39, 40, 41, 42, 43, 46, 49, 30, 31, 32, 33, 52, 53, 54, 57mapdpglem31 38998 . . . 4 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → = 𝑖)
59583exp 1116 . . 3 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ((𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) → (( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))) → = 𝑖)))
6059rexlimdvv 3255 . 2 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))) → = 𝑖))
6137, 60mpd 15 1 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → = 𝑖)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wrex 3110  cdif 3881  {csn 4528  cfv 6328  (class class class)co 7139  Basecbs 16479  Scalarcsca 16564   ·𝑠 cvsca 16565  0gc0g 16709  -gcsg 18101  LSpanclspn 19740  HLchlt 36645  LHypclh 37279  DVecHcdvh 38373  LCDualclcd 38881  mapdcmpd 38919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-riotaBAD 36248
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-tpos 7879  df-undef 7926  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-0g 16711  df-mre 16853  df-mrc 16854  df-acs 16856  df-proset 17534  df-poset 17552  df-plt 17564  df-lub 17580  df-glb 17581  df-join 17582  df-meet 17583  df-p0 17645  df-p1 17646  df-lat 17652  df-clat 17714  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-grp 18102  df-minusg 18103  df-sbg 18104  df-subg 18272  df-cntz 18443  df-oppg 18470  df-lsm 18757  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-ring 19296  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-drng 19501  df-lmod 19633  df-lss 19701  df-lsp 19741  df-lvec 19872  df-lsatoms 36271  df-lshyp 36272  df-lcv 36314  df-lfl 36353  df-lkr 36381  df-ldual 36419  df-oposet 36471  df-ol 36473  df-oml 36474  df-covers 36561  df-ats 36562  df-atl 36593  df-cvlat 36617  df-hlat 36646  df-llines 36793  df-lplanes 36794  df-lvols 36795  df-lines 36796  df-psubsp 36798  df-pmap 36799  df-padd 37091  df-lhyp 37283  df-laut 37284  df-ldil 37399  df-ltrn 37400  df-trl 37454  df-tgrp 38038  df-tendo 38050  df-edring 38052  df-dveca 38298  df-disoa 38324  df-dvech 38374  df-dib 38434  df-dic 38468  df-dih 38524  df-doch 38643  df-djh 38690  df-lcdual 38882  df-mapd 38920
This theorem is referenced by:  mapdpg  39001
  Copyright terms: Public domain W3C validator