Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem32 Structured version   Visualization version   GIF version

Theorem mapdpglem32 41233
Description: Lemma for mapdpg 41234. Uniqueness part - consolidate hypotheses in mapdpglem31 41231. (Contributed by NM, 23-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h 𝐻 = (LHypβ€˜πΎ)
mapdpg.m 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
mapdpg.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
mapdpg.v 𝑉 = (Baseβ€˜π‘ˆ)
mapdpg.s βˆ’ = (-gβ€˜π‘ˆ)
mapdpg.z 0 = (0gβ€˜π‘ˆ)
mapdpg.n 𝑁 = (LSpanβ€˜π‘ˆ)
mapdpg.c 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
mapdpg.f 𝐹 = (Baseβ€˜πΆ)
mapdpg.r 𝑅 = (-gβ€˜πΆ)
mapdpg.j 𝐽 = (LSpanβ€˜πΆ)
mapdpg.k (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
mapdpg.x (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
mapdpg.y (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
mapdpg.g (πœ‘ β†’ 𝐺 ∈ 𝐹)
mapdpg.ne (πœ‘ β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}))
mapdpg.e (πœ‘ β†’ (π‘€β€˜(π‘β€˜{𝑋})) = (π½β€˜{𝐺}))
Assertion
Ref Expression
mapdpglem32 ((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) β†’ β„Ž = 𝑖)
Distinct variable groups:   𝐢,β„Ž   β„Ž,𝐹   β„Ž,𝐺   β„Ž,𝐽   β„Ž,𝑀   β„Ž,𝑁   𝑅,β„Ž   βˆ’ ,β„Ž   π‘ˆ,β„Ž   β„Ž,𝑋   β„Ž,π‘Œ   β„Ž,𝑖
Allowed substitution hints:   πœ‘(β„Ž,𝑖)   𝐢(𝑖)   𝑅(𝑖)   π‘ˆ(𝑖)   𝐹(𝑖)   𝐺(𝑖)   𝐻(β„Ž,𝑖)   𝐽(𝑖)   𝐾(β„Ž,𝑖)   𝑀(𝑖)   βˆ’ (𝑖)   𝑁(𝑖)   𝑉(β„Ž,𝑖)   π‘Š(β„Ž,𝑖)   𝑋(𝑖)   π‘Œ(𝑖)   0 (β„Ž,𝑖)

Proof of Theorem mapdpglem32
Dummy variables 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdpg.h . . . 4 𝐻 = (LHypβ€˜πΎ)
2 mapdpg.m . . . 4 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
3 mapdpg.u . . . 4 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
4 mapdpg.v . . . 4 𝑉 = (Baseβ€˜π‘ˆ)
5 mapdpg.s . . . 4 βˆ’ = (-gβ€˜π‘ˆ)
6 mapdpg.z . . . 4 0 = (0gβ€˜π‘ˆ)
7 mapdpg.n . . . 4 𝑁 = (LSpanβ€˜π‘ˆ)
8 mapdpg.c . . . 4 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
9 mapdpg.f . . . 4 𝐹 = (Baseβ€˜πΆ)
10 mapdpg.r . . . 4 𝑅 = (-gβ€˜πΆ)
11 mapdpg.j . . . 4 𝐽 = (LSpanβ€˜πΆ)
12 mapdpg.k . . . . 5 (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
13123ad2ant1 1130 . . . 4 ((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
14 mapdpg.x . . . . 5 (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
15143ad2ant1 1130 . . . 4 ((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
16 mapdpg.y . . . . 5 (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
17163ad2ant1 1130 . . . 4 ((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
18 mapdpg.g . . . . 5 (πœ‘ β†’ 𝐺 ∈ 𝐹)
19183ad2ant1 1130 . . . 4 ((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) β†’ 𝐺 ∈ 𝐹)
20 mapdpg.ne . . . . 5 (πœ‘ β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}))
21203ad2ant1 1130 . . . 4 ((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}))
22 mapdpg.e . . . . 5 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{𝑋})) = (π½β€˜{𝐺}))
23223ad2ant1 1130 . . . 4 ((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) β†’ (π‘€β€˜(π‘β€˜{𝑋})) = (π½β€˜{𝐺}))
24 simp2l 1196 . . . . 5 ((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) β†’ β„Ž ∈ 𝐹)
25 simp3l 1198 . . . . 5 ((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) β†’ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})))
2624, 25jca 510 . . . 4 ((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) β†’ (β„Ž ∈ 𝐹 ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)}))))
27 simp2r 1197 . . . . 5 ((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) β†’ 𝑖 ∈ 𝐹)
28 simp3r 1199 . . . . 5 ((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) β†’ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))
2927, 28jca 510 . . . 4 ((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) β†’ (𝑖 ∈ 𝐹 ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)}))))
30 eqid 2725 . . . 4 (Scalarβ€˜π‘ˆ) = (Scalarβ€˜π‘ˆ)
31 eqid 2725 . . . 4 (Baseβ€˜(Scalarβ€˜π‘ˆ)) = (Baseβ€˜(Scalarβ€˜π‘ˆ))
32 eqid 2725 . . . 4 ( ·𝑠 β€˜πΆ) = ( ·𝑠 β€˜πΆ)
33 eqid 2725 . . . 4 (0gβ€˜(Scalarβ€˜π‘ˆ)) = (0gβ€˜(Scalarβ€˜π‘ˆ))
341, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 26, 29, 30, 31, 32, 33mapdpglem26 41226 . . 3 ((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) β†’ βˆƒπ‘’ ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖))
351, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 26, 29, 30, 31, 32, 33mapdpglem27 41227 . . 3 ((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) β†’ βˆƒπ‘£ ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})(πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖)))
36 reeanv 3217 . . 3 (βˆƒπ‘’ ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})βˆƒπ‘£ ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})(β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖))) ↔ (βˆƒπ‘’ ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ βˆƒπ‘£ ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})(πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖))))
3734, 35, 36sylanbrc 581 . 2 ((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) β†’ βˆƒπ‘’ ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})βˆƒπ‘£ ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})(β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖))))
38133ad2ant1 1130 . . . . 5 (((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) ∧ (𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) ∧ (β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖)))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
39153ad2ant1 1130 . . . . 5 (((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) ∧ (𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) ∧ (β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖)))) β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
40173ad2ant1 1130 . . . . 5 (((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) ∧ (𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) ∧ (β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖)))) β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
41193ad2ant1 1130 . . . . 5 (((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) ∧ (𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) ∧ (β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖)))) β†’ 𝐺 ∈ 𝐹)
42213ad2ant1 1130 . . . . 5 (((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) ∧ (𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) ∧ (β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖)))) β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}))
43233ad2ant1 1130 . . . . 5 (((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) ∧ (𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) ∧ (β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖)))) β†’ (π‘€β€˜(π‘β€˜{𝑋})) = (π½β€˜{𝐺}))
44 simp12l 1283 . . . . . 6 (((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) ∧ (𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) ∧ (β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖)))) β†’ β„Ž ∈ 𝐹)
45 simp13l 1285 . . . . . 6 (((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) ∧ (𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) ∧ (β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖)))) β†’ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})))
4644, 45jca 510 . . . . 5 (((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) ∧ (𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) ∧ (β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖)))) β†’ (β„Ž ∈ 𝐹 ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)}))))
47 simp12r 1284 . . . . . 6 (((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) ∧ (𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) ∧ (β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖)))) β†’ 𝑖 ∈ 𝐹)
48 simp13r 1286 . . . . . 6 (((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) ∧ (𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) ∧ (β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖)))) β†’ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))
4947, 48jca 510 . . . . 5 (((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) ∧ (𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) ∧ (β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖)))) β†’ (𝑖 ∈ 𝐹 ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)}))))
50 eldifi 4119 . . . . . . 7 (𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) β†’ 𝑣 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)))
5150adantl 480 . . . . . 6 ((𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) β†’ 𝑣 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)))
52513ad2ant2 1131 . . . . 5 (((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) ∧ (𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) ∧ (β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖)))) β†’ 𝑣 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)))
53 simp3l 1198 . . . . 5 (((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) ∧ (𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) ∧ (β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖)))) β†’ β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖))
54 simp3r 1199 . . . . 5 (((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) ∧ (𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) ∧ (β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖)))) β†’ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖)))
55 eldifi 4119 . . . . . . 7 (𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) β†’ 𝑒 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)))
5655adantr 479 . . . . . 6 ((𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) β†’ 𝑒 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)))
57563ad2ant2 1131 . . . . 5 (((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) ∧ (𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) ∧ (β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖)))) β†’ 𝑒 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)))
581, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 38, 39, 40, 41, 42, 43, 46, 49, 30, 31, 32, 33, 52, 53, 54, 57mapdpglem31 41231 . . . 4 (((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) ∧ (𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) ∧ (β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖)))) β†’ β„Ž = 𝑖)
59583exp 1116 . . 3 ((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) β†’ ((𝑒 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})) β†’ ((β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖))) β†’ β„Ž = 𝑖)))
6059rexlimdvv 3201 . 2 ((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) β†’ (βˆƒπ‘’ ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})βˆƒπ‘£ ∈ ((Baseβ€˜(Scalarβ€˜π‘ˆ)) βˆ– {(0gβ€˜(Scalarβ€˜π‘ˆ))})(β„Ž = (𝑒( ·𝑠 β€˜πΆ)𝑖) ∧ (πΊπ‘…β„Ž) = (𝑣( ·𝑠 β€˜πΆ)(𝐺𝑅𝑖))) β†’ β„Ž = 𝑖))
6137, 60mpd 15 1 ((πœ‘ ∧ (β„Ž ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) ∧ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})) ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑖}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐺𝑅𝑖)})))) β†’ β„Ž = 𝑖)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆƒwrex 3060   βˆ– cdif 3937  {csn 4624  β€˜cfv 6542  (class class class)co 7415  Basecbs 17177  Scalarcsca 17233   ·𝑠 cvsca 17234  0gc0g 17418  -gcsg 18894  LSpanclspn 20857  HLchlt 38877  LHypclh 39512  DVecHcdvh 40606  LCDualclcd 41114  mapdcmpd 41152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-riotaBAD 38480
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7681  df-om 7868  df-1st 7989  df-2nd 7990  df-tpos 8228  df-undef 8275  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-map 8843  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-n0 12501  df-z 12587  df-uz 12851  df-fz 13515  df-struct 17113  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-mulr 17244  df-sca 17246  df-vsca 17247  df-0g 17420  df-mre 17563  df-mrc 17564  df-acs 17566  df-proset 18284  df-poset 18302  df-plt 18319  df-lub 18335  df-glb 18336  df-join 18337  df-meet 18338  df-p0 18414  df-p1 18415  df-lat 18421  df-clat 18488  df-mgm 18597  df-sgrp 18676  df-mnd 18692  df-submnd 18738  df-grp 18895  df-minusg 18896  df-sbg 18897  df-subg 19080  df-cntz 19270  df-oppg 19299  df-lsm 19593  df-cmn 19739  df-abl 19740  df-mgp 20077  df-rng 20095  df-ur 20124  df-ring 20177  df-oppr 20275  df-dvdsr 20298  df-unit 20299  df-invr 20329  df-dvr 20342  df-drng 20628  df-lmod 20747  df-lss 20818  df-lsp 20858  df-lvec 20990  df-lsatoms 38503  df-lshyp 38504  df-lcv 38546  df-lfl 38585  df-lkr 38613  df-ldual 38651  df-oposet 38703  df-ol 38705  df-oml 38706  df-covers 38793  df-ats 38794  df-atl 38825  df-cvlat 38849  df-hlat 38878  df-llines 39026  df-lplanes 39027  df-lvols 39028  df-lines 39029  df-psubsp 39031  df-pmap 39032  df-padd 39324  df-lhyp 39516  df-laut 39517  df-ldil 39632  df-ltrn 39633  df-trl 39687  df-tgrp 40271  df-tendo 40283  df-edring 40285  df-dveca 40531  df-disoa 40557  df-dvech 40607  df-dib 40667  df-dic 40701  df-dih 40757  df-doch 40876  df-djh 40923  df-lcdual 41115  df-mapd 41153
This theorem is referenced by:  mapdpg  41234
  Copyright terms: Public domain W3C validator