Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem32 Structured version   Visualization version   GIF version

Theorem mapdpglem32 41707
Description: Lemma for mapdpg 41708. Uniqueness part - consolidate hypotheses in mapdpglem31 41705. (Contributed by NM, 23-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h 𝐻 = (LHyp‘𝐾)
mapdpg.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpg.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpg.v 𝑉 = (Base‘𝑈)
mapdpg.s = (-g𝑈)
mapdpg.z 0 = (0g𝑈)
mapdpg.n 𝑁 = (LSpan‘𝑈)
mapdpg.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpg.f 𝐹 = (Base‘𝐶)
mapdpg.r 𝑅 = (-g𝐶)
mapdpg.j 𝐽 = (LSpan‘𝐶)
mapdpg.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpg.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdpg.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdpg.g (𝜑𝐺𝐹)
mapdpg.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpg.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
Assertion
Ref Expression
mapdpglem32 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → = 𝑖)
Distinct variable groups:   𝐶,   ,𝐹   ,𝐺   ,𝐽   ,𝑀   ,𝑁   𝑅,   ,   𝑈,   ,𝑋   ,𝑌   ,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐶(𝑖)   𝑅(𝑖)   𝑈(𝑖)   𝐹(𝑖)   𝐺(𝑖)   𝐻(,𝑖)   𝐽(𝑖)   𝐾(,𝑖)   𝑀(𝑖)   (𝑖)   𝑁(𝑖)   𝑉(,𝑖)   𝑊(,𝑖)   𝑋(𝑖)   𝑌(𝑖)   0 (,𝑖)

Proof of Theorem mapdpglem32
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdpg.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdpg.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdpg.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdpg.v . . . 4 𝑉 = (Base‘𝑈)
5 mapdpg.s . . . 4 = (-g𝑈)
6 mapdpg.z . . . 4 0 = (0g𝑈)
7 mapdpg.n . . . 4 𝑁 = (LSpan‘𝑈)
8 mapdpg.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
9 mapdpg.f . . . 4 𝐹 = (Base‘𝐶)
10 mapdpg.r . . . 4 𝑅 = (-g𝐶)
11 mapdpg.j . . . 4 𝐽 = (LSpan‘𝐶)
12 mapdpg.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
13123ad2ant1 1134 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 mapdpg.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
15143ad2ant1 1134 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
16 mapdpg.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
17163ad2ant1 1134 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
18 mapdpg.g . . . . 5 (𝜑𝐺𝐹)
19183ad2ant1 1134 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝐺𝐹)
20 mapdpg.ne . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
21203ad2ant1 1134 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
22 mapdpg.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
23223ad2ant1 1134 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
24 simp2l 1200 . . . . 5 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝐹)
25 simp3l 1202 . . . . 5 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
2624, 25jca 511 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
27 simp2r 1201 . . . . 5 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝑖𝐹)
28 simp3r 1203 . . . . 5 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))
2927, 28jca 511 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
30 eqid 2737 . . . 4 (Scalar‘𝑈) = (Scalar‘𝑈)
31 eqid 2737 . . . 4 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
32 eqid 2737 . . . 4 ( ·𝑠𝐶) = ( ·𝑠𝐶)
33 eqid 2737 . . . 4 (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈))
341, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 26, 29, 30, 31, 32, 33mapdpglem26 41700 . . 3 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) = (𝑢( ·𝑠𝐶)𝑖))
351, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 26, 29, 30, 31, 32, 33mapdpglem27 41701 . . 3 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})(𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))
36 reeanv 3229 . . 3 (∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))) ↔ (∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) = (𝑢( ·𝑠𝐶)𝑖) ∧ ∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})(𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))))
3734, 35, 36sylanbrc 583 . 2 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))))
38133ad2ant1 1134 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
39153ad2ant1 1134 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
40173ad2ant1 1134 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
41193ad2ant1 1134 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝐺𝐹)
42213ad2ant1 1134 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
43233ad2ant1 1134 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
44 simp12l 1287 . . . . . 6 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝐹)
45 simp13l 1289 . . . . . 6 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
4644, 45jca 511 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
47 simp12r 1288 . . . . . 6 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑖𝐹)
48 simp13r 1290 . . . . . 6 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))
4947, 48jca 511 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
50 eldifi 4131 . . . . . . 7 (𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) → 𝑣 ∈ (Base‘(Scalar‘𝑈)))
5150adantl 481 . . . . . 6 ((𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) → 𝑣 ∈ (Base‘(Scalar‘𝑈)))
52513ad2ant2 1135 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑣 ∈ (Base‘(Scalar‘𝑈)))
53 simp3l 1202 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → = (𝑢( ·𝑠𝐶)𝑖))
54 simp3r 1203 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))
55 eldifi 4131 . . . . . . 7 (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) → 𝑢 ∈ (Base‘(Scalar‘𝑈)))
5655adantr 480 . . . . . 6 ((𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) → 𝑢 ∈ (Base‘(Scalar‘𝑈)))
57563ad2ant2 1135 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑢 ∈ (Base‘(Scalar‘𝑈)))
581, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 38, 39, 40, 41, 42, 43, 46, 49, 30, 31, 32, 33, 52, 53, 54, 57mapdpglem31 41705 . . . 4 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → = 𝑖)
59583exp 1120 . . 3 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ((𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) → (( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))) → = 𝑖)))
6059rexlimdvv 3212 . 2 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))) → = 𝑖))
6137, 60mpd 15 1 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → = 𝑖)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  cdif 3948  {csn 4626  cfv 6561  (class class class)co 7431  Basecbs 17247  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484  -gcsg 18953  LSpanclspn 20969  HLchlt 39351  LHypclh 39986  DVecHcdvh 41080  LCDualclcd 41588  mapdcmpd 41626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-riotaBAD 38954
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-undef 8298  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-0g 17486  df-mre 17629  df-mrc 17630  df-acs 17632  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cntz 19335  df-oppg 19364  df-lsm 19654  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-nzr 20513  df-rlreg 20694  df-domn 20695  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lvec 21102  df-lsatoms 38977  df-lshyp 38978  df-lcv 39020  df-lfl 39059  df-lkr 39087  df-ldual 39125  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501  df-lvols 39502  df-lines 39503  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-lhyp 39990  df-laut 39991  df-ldil 40106  df-ltrn 40107  df-trl 40161  df-tgrp 40745  df-tendo 40757  df-edring 40759  df-dveca 41005  df-disoa 41031  df-dvech 41081  df-dib 41141  df-dic 41175  df-dih 41231  df-doch 41350  df-djh 41397  df-lcdual 41589  df-mapd 41627
This theorem is referenced by:  mapdpg  41708
  Copyright terms: Public domain W3C validator