Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem32 Structured version   Visualization version   GIF version

Theorem mapdpglem32 39413
Description: Lemma for mapdpg 39414. Uniqueness part - consolidate hypotheses in mapdpglem31 39411. (Contributed by NM, 23-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h 𝐻 = (LHyp‘𝐾)
mapdpg.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpg.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpg.v 𝑉 = (Base‘𝑈)
mapdpg.s = (-g𝑈)
mapdpg.z 0 = (0g𝑈)
mapdpg.n 𝑁 = (LSpan‘𝑈)
mapdpg.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpg.f 𝐹 = (Base‘𝐶)
mapdpg.r 𝑅 = (-g𝐶)
mapdpg.j 𝐽 = (LSpan‘𝐶)
mapdpg.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpg.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdpg.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdpg.g (𝜑𝐺𝐹)
mapdpg.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpg.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
Assertion
Ref Expression
mapdpglem32 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → = 𝑖)
Distinct variable groups:   𝐶,   ,𝐹   ,𝐺   ,𝐽   ,𝑀   ,𝑁   𝑅,   ,   𝑈,   ,𝑋   ,𝑌   ,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐶(𝑖)   𝑅(𝑖)   𝑈(𝑖)   𝐹(𝑖)   𝐺(𝑖)   𝐻(,𝑖)   𝐽(𝑖)   𝐾(,𝑖)   𝑀(𝑖)   (𝑖)   𝑁(𝑖)   𝑉(,𝑖)   𝑊(,𝑖)   𝑋(𝑖)   𝑌(𝑖)   0 (,𝑖)

Proof of Theorem mapdpglem32
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdpg.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdpg.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdpg.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdpg.v . . . 4 𝑉 = (Base‘𝑈)
5 mapdpg.s . . . 4 = (-g𝑈)
6 mapdpg.z . . . 4 0 = (0g𝑈)
7 mapdpg.n . . . 4 𝑁 = (LSpan‘𝑈)
8 mapdpg.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
9 mapdpg.f . . . 4 𝐹 = (Base‘𝐶)
10 mapdpg.r . . . 4 𝑅 = (-g𝐶)
11 mapdpg.j . . . 4 𝐽 = (LSpan‘𝐶)
12 mapdpg.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
13123ad2ant1 1135 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 mapdpg.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
15143ad2ant1 1135 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
16 mapdpg.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
17163ad2ant1 1135 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
18 mapdpg.g . . . . 5 (𝜑𝐺𝐹)
19183ad2ant1 1135 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝐺𝐹)
20 mapdpg.ne . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
21203ad2ant1 1135 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
22 mapdpg.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
23223ad2ant1 1135 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
24 simp2l 1201 . . . . 5 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝐹)
25 simp3l 1203 . . . . 5 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
2624, 25jca 515 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
27 simp2r 1202 . . . . 5 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝑖𝐹)
28 simp3r 1204 . . . . 5 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))
2927, 28jca 515 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
30 eqid 2734 . . . 4 (Scalar‘𝑈) = (Scalar‘𝑈)
31 eqid 2734 . . . 4 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
32 eqid 2734 . . . 4 ( ·𝑠𝐶) = ( ·𝑠𝐶)
33 eqid 2734 . . . 4 (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈))
341, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 26, 29, 30, 31, 32, 33mapdpglem26 39406 . . 3 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) = (𝑢( ·𝑠𝐶)𝑖))
351, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 26, 29, 30, 31, 32, 33mapdpglem27 39407 . . 3 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})(𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))
36 reeanv 3272 . . 3 (∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))) ↔ (∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) = (𝑢( ·𝑠𝐶)𝑖) ∧ ∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})(𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))))
3734, 35, 36sylanbrc 586 . 2 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))))
38133ad2ant1 1135 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
39153ad2ant1 1135 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
40173ad2ant1 1135 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
41193ad2ant1 1135 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝐺𝐹)
42213ad2ant1 1135 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
43233ad2ant1 1135 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
44 simp12l 1288 . . . . . 6 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝐹)
45 simp13l 1290 . . . . . 6 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
4644, 45jca 515 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
47 simp12r 1289 . . . . . 6 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑖𝐹)
48 simp13r 1291 . . . . . 6 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))
4947, 48jca 515 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
50 eldifi 4031 . . . . . . 7 (𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) → 𝑣 ∈ (Base‘(Scalar‘𝑈)))
5150adantl 485 . . . . . 6 ((𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) → 𝑣 ∈ (Base‘(Scalar‘𝑈)))
52513ad2ant2 1136 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑣 ∈ (Base‘(Scalar‘𝑈)))
53 simp3l 1203 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → = (𝑢( ·𝑠𝐶)𝑖))
54 simp3r 1204 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))
55 eldifi 4031 . . . . . . 7 (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) → 𝑢 ∈ (Base‘(Scalar‘𝑈)))
5655adantr 484 . . . . . 6 ((𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) → 𝑢 ∈ (Base‘(Scalar‘𝑈)))
57563ad2ant2 1136 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑢 ∈ (Base‘(Scalar‘𝑈)))
581, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 38, 39, 40, 41, 42, 43, 46, 49, 30, 31, 32, 33, 52, 53, 54, 57mapdpglem31 39411 . . . 4 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → = 𝑖)
59583exp 1121 . . 3 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ((𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) → (( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))) → = 𝑖)))
6059rexlimdvv 3205 . 2 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))) → = 𝑖))
6137, 60mpd 15 1 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → = 𝑖)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2935  wrex 3055  cdif 3854  {csn 4531  cfv 6369  (class class class)co 7202  Basecbs 16684  Scalarcsca 16770   ·𝑠 cvsca 16771  0gc0g 16916  -gcsg 18339  LSpanclspn 19980  HLchlt 37058  LHypclh 37692  DVecHcdvh 38786  LCDualclcd 39294  mapdcmpd 39332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-riotaBAD 36661
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-tpos 7957  df-undef 8004  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-n0 12074  df-z 12160  df-uz 12422  df-fz 13079  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-sca 16783  df-vsca 16784  df-0g 16918  df-mre 17061  df-mrc 17062  df-acs 17064  df-proset 17774  df-poset 17792  df-plt 17808  df-lub 17824  df-glb 17825  df-join 17826  df-meet 17827  df-p0 17903  df-p1 17904  df-lat 17910  df-clat 17977  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-submnd 18191  df-grp 18340  df-minusg 18341  df-sbg 18342  df-subg 18512  df-cntz 18683  df-oppg 18710  df-lsm 18997  df-cmn 19144  df-abl 19145  df-mgp 19477  df-ur 19489  df-ring 19536  df-oppr 19613  df-dvdsr 19631  df-unit 19632  df-invr 19662  df-dvr 19673  df-drng 19741  df-lmod 19873  df-lss 19941  df-lsp 19981  df-lvec 20112  df-lsatoms 36684  df-lshyp 36685  df-lcv 36727  df-lfl 36766  df-lkr 36794  df-ldual 36832  df-oposet 36884  df-ol 36886  df-oml 36887  df-covers 36974  df-ats 36975  df-atl 37006  df-cvlat 37030  df-hlat 37059  df-llines 37206  df-lplanes 37207  df-lvols 37208  df-lines 37209  df-psubsp 37211  df-pmap 37212  df-padd 37504  df-lhyp 37696  df-laut 37697  df-ldil 37812  df-ltrn 37813  df-trl 37867  df-tgrp 38451  df-tendo 38463  df-edring 38465  df-dveca 38711  df-disoa 38737  df-dvech 38787  df-dib 38847  df-dic 38881  df-dih 38937  df-doch 39056  df-djh 39103  df-lcdual 39295  df-mapd 39333
This theorem is referenced by:  mapdpg  39414
  Copyright terms: Public domain W3C validator