Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem32 Structured version   Visualization version   GIF version

Theorem mapdpglem32 39761
Description: Lemma for mapdpg 39762. Uniqueness part - consolidate hypotheses in mapdpglem31 39759. (Contributed by NM, 23-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h 𝐻 = (LHyp‘𝐾)
mapdpg.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpg.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpg.v 𝑉 = (Base‘𝑈)
mapdpg.s = (-g𝑈)
mapdpg.z 0 = (0g𝑈)
mapdpg.n 𝑁 = (LSpan‘𝑈)
mapdpg.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpg.f 𝐹 = (Base‘𝐶)
mapdpg.r 𝑅 = (-g𝐶)
mapdpg.j 𝐽 = (LSpan‘𝐶)
mapdpg.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpg.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdpg.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdpg.g (𝜑𝐺𝐹)
mapdpg.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpg.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
Assertion
Ref Expression
mapdpglem32 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → = 𝑖)
Distinct variable groups:   𝐶,   ,𝐹   ,𝐺   ,𝐽   ,𝑀   ,𝑁   𝑅,   ,   𝑈,   ,𝑋   ,𝑌   ,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐶(𝑖)   𝑅(𝑖)   𝑈(𝑖)   𝐹(𝑖)   𝐺(𝑖)   𝐻(,𝑖)   𝐽(𝑖)   𝐾(,𝑖)   𝑀(𝑖)   (𝑖)   𝑁(𝑖)   𝑉(,𝑖)   𝑊(,𝑖)   𝑋(𝑖)   𝑌(𝑖)   0 (,𝑖)

Proof of Theorem mapdpglem32
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdpg.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdpg.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdpg.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdpg.v . . . 4 𝑉 = (Base‘𝑈)
5 mapdpg.s . . . 4 = (-g𝑈)
6 mapdpg.z . . . 4 0 = (0g𝑈)
7 mapdpg.n . . . 4 𝑁 = (LSpan‘𝑈)
8 mapdpg.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
9 mapdpg.f . . . 4 𝐹 = (Base‘𝐶)
10 mapdpg.r . . . 4 𝑅 = (-g𝐶)
11 mapdpg.j . . . 4 𝐽 = (LSpan‘𝐶)
12 mapdpg.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
13123ad2ant1 1133 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 mapdpg.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
15143ad2ant1 1133 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
16 mapdpg.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
17163ad2ant1 1133 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
18 mapdpg.g . . . . 5 (𝜑𝐺𝐹)
19183ad2ant1 1133 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝐺𝐹)
20 mapdpg.ne . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
21203ad2ant1 1133 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
22 mapdpg.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
23223ad2ant1 1133 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
24 simp2l 1199 . . . . 5 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝐹)
25 simp3l 1201 . . . . 5 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
2624, 25jca 513 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
27 simp2r 1200 . . . . 5 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → 𝑖𝐹)
28 simp3r 1202 . . . . 5 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))
2927, 28jca 513 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
30 eqid 2736 . . . 4 (Scalar‘𝑈) = (Scalar‘𝑈)
31 eqid 2736 . . . 4 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
32 eqid 2736 . . . 4 ( ·𝑠𝐶) = ( ·𝑠𝐶)
33 eqid 2736 . . . 4 (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈))
341, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 26, 29, 30, 31, 32, 33mapdpglem26 39754 . . 3 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) = (𝑢( ·𝑠𝐶)𝑖))
351, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 26, 29, 30, 31, 32, 33mapdpglem27 39755 . . 3 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})(𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))
36 reeanv 3214 . . 3 (∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))) ↔ (∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) = (𝑢( ·𝑠𝐶)𝑖) ∧ ∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})(𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))))
3734, 35, 36sylanbrc 584 . 2 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))))
38133ad2ant1 1133 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
39153ad2ant1 1133 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
40173ad2ant1 1133 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
41193ad2ant1 1133 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝐺𝐹)
42213ad2ant1 1133 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
43233ad2ant1 1133 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
44 simp12l 1286 . . . . . 6 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝐹)
45 simp13l 1288 . . . . . 6 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
4644, 45jca 513 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
47 simp12r 1287 . . . . . 6 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑖𝐹)
48 simp13r 1289 . . . . . 6 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))
4947, 48jca 513 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
50 eldifi 4067 . . . . . . 7 (𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) → 𝑣 ∈ (Base‘(Scalar‘𝑈)))
5150adantl 483 . . . . . 6 ((𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) → 𝑣 ∈ (Base‘(Scalar‘𝑈)))
52513ad2ant2 1134 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑣 ∈ (Base‘(Scalar‘𝑈)))
53 simp3l 1201 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → = (𝑢( ·𝑠𝐶)𝑖))
54 simp3r 1202 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))
55 eldifi 4067 . . . . . . 7 (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) → 𝑢 ∈ (Base‘(Scalar‘𝑈)))
5655adantr 482 . . . . . 6 ((𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) → 𝑢 ∈ (Base‘(Scalar‘𝑈)))
57563ad2ant2 1134 . . . . 5 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → 𝑢 ∈ (Base‘(Scalar‘𝑈)))
581, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 38, 39, 40, 41, 42, 43, 46, 49, 30, 31, 32, 33, 52, 53, 54, 57mapdpglem31 39759 . . . 4 (((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) ∧ (𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) ∧ ( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖)))) → = 𝑖)
59583exp 1119 . . 3 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → ((𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))}) ∧ 𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})) → (( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))) → = 𝑖)))
6059rexlimdvv 3201 . 2 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → (∃𝑢 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})∃𝑣 ∈ ((Base‘(Scalar‘𝑈)) ∖ {(0g‘(Scalar‘𝑈))})( = (𝑢( ·𝑠𝐶)𝑖) ∧ (𝐺𝑅) = (𝑣( ·𝑠𝐶)(𝐺𝑅𝑖))) → = 𝑖))
6137, 60mpd 15 1 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → = 𝑖)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  wne 2941  wrex 3071  cdif 3889  {csn 4565  cfv 6458  (class class class)co 7307  Basecbs 16957  Scalarcsca 17010   ·𝑠 cvsca 17011  0gc0g 17195  -gcsg 18624  LSpanclspn 20278  HLchlt 37406  LHypclh 38040  DVecHcdvh 39134  LCDualclcd 39642  mapdcmpd 39680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-riotaBAD 37009
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-tpos 8073  df-undef 8120  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-n0 12280  df-z 12366  df-uz 12629  df-fz 13286  df-struct 16893  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-ress 16987  df-plusg 17020  df-mulr 17021  df-sca 17023  df-vsca 17024  df-0g 17197  df-mre 17340  df-mrc 17341  df-acs 17343  df-proset 18058  df-poset 18076  df-plt 18093  df-lub 18109  df-glb 18110  df-join 18111  df-meet 18112  df-p0 18188  df-p1 18189  df-lat 18195  df-clat 18262  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-submnd 18476  df-grp 18625  df-minusg 18626  df-sbg 18627  df-subg 18797  df-cntz 18968  df-oppg 18995  df-lsm 19286  df-cmn 19433  df-abl 19434  df-mgp 19766  df-ur 19783  df-ring 19830  df-oppr 19907  df-dvdsr 19928  df-unit 19929  df-invr 19959  df-dvr 19970  df-drng 20038  df-lmod 20170  df-lss 20239  df-lsp 20279  df-lvec 20410  df-lsatoms 37032  df-lshyp 37033  df-lcv 37075  df-lfl 37114  df-lkr 37142  df-ldual 37180  df-oposet 37232  df-ol 37234  df-oml 37235  df-covers 37322  df-ats 37323  df-atl 37354  df-cvlat 37378  df-hlat 37407  df-llines 37554  df-lplanes 37555  df-lvols 37556  df-lines 37557  df-psubsp 37559  df-pmap 37560  df-padd 37852  df-lhyp 38044  df-laut 38045  df-ldil 38160  df-ltrn 38161  df-trl 38215  df-tgrp 38799  df-tendo 38811  df-edring 38813  df-dveca 39059  df-disoa 39085  df-dvech 39135  df-dib 39195  df-dic 39229  df-dih 39285  df-doch 39404  df-djh 39451  df-lcdual 39643  df-mapd 39681
This theorem is referenced by:  mapdpg  39762
  Copyright terms: Public domain W3C validator