Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemnclw Structured version   Visualization version   GIF version

Theorem 4atexlemnclw 40168
Description: Lemma for 4atexlem7 40173. (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
4thatlem0.c 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
Assertion
Ref Expression
4atexlemnclw (𝜑 → ¬ 𝐶 𝑊)

Proof of Theorem 4atexlemnclw
StepHypRef Expression
1 4thatlem0.c . . . 4 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
2 4thatlem.ph . . . . . 6 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
324atexlemkl 40155 . . . . 5 (𝜑𝐾 ∈ Lat)
4 4thatlem0.j . . . . . 6 = (join‘𝐾)
5 4thatlem0.a . . . . . 6 𝐴 = (Atoms‘𝐾)
62, 4, 54atexlemqtb 40159 . . . . 5 (𝜑 → (𝑄 𝑇) ∈ (Base‘𝐾))
72, 4, 54atexlempsb 40158 . . . . 5 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
8 eqid 2731 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
9 4thatlem0.l . . . . . 6 = (le‘𝐾)
10 4thatlem0.m . . . . . 6 = (meet‘𝐾)
118, 9, 10latmle1 18370 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
123, 6, 7, 11syl3anc 1373 . . . 4 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
131, 12eqbrtrid 5124 . . 3 (𝜑𝐶 (𝑄 𝑇))
14 simp13r 1290 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑄 𝑊)
152, 14sylbi 217 . . . 4 (𝜑 → ¬ 𝑄 𝑊)
1624atexlemkc 40156 . . . . . 6 (𝜑𝐾 ∈ CvLat)
17 4thatlem0.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
18 4thatlem0.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
19 4thatlem0.v . . . . . . 7 𝑉 = ((𝑃 𝑆) 𝑊)
202, 9, 4, 10, 5, 17, 18, 194atexlemv 40163 . . . . . 6 (𝜑𝑉𝐴)
2124atexlemq 40149 . . . . . 6 (𝜑𝑄𝐴)
2224atexlemt 40151 . . . . . 6 (𝜑𝑇𝐴)
232, 9, 4, 10, 5, 17, 184atexlemu 40162 . . . . . . 7 (𝜑𝑈𝐴)
242, 9, 4, 10, 5, 17, 18, 194atexlemunv 40164 . . . . . . 7 (𝜑𝑈𝑉)
2524atexlemutvt 40152 . . . . . . 7 (𝜑 → (𝑈 𝑇) = (𝑉 𝑇))
265, 4cvlsupr6 39445 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑈𝐴𝑉𝐴𝑇𝐴) ∧ (𝑈𝑉 ∧ (𝑈 𝑇) = (𝑉 𝑇))) → 𝑇𝑉)
2726necomd 2983 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑈𝐴𝑉𝐴𝑇𝐴) ∧ (𝑈𝑉 ∧ (𝑈 𝑇) = (𝑉 𝑇))) → 𝑉𝑇)
2816, 23, 20, 22, 24, 25, 27syl132anc 1390 . . . . . 6 (𝜑𝑉𝑇)
299, 4, 5cvlatexch2 39435 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑉𝐴𝑄𝐴𝑇𝐴) ∧ 𝑉𝑇) → (𝑉 (𝑄 𝑇) → 𝑄 (𝑉 𝑇)))
3016, 20, 21, 22, 28, 29syl131anc 1385 . . . . 5 (𝜑 → (𝑉 (𝑄 𝑇) → 𝑄 (𝑉 𝑇)))
312, 174atexlemwb 40157 . . . . . . . . 9 (𝜑𝑊 ∈ (Base‘𝐾))
328, 9, 10latmle2 18371 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) 𝑊)
333, 7, 31, 32syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝑃 𝑆) 𝑊) 𝑊)
3419, 33eqbrtrid 5124 . . . . . . 7 (𝜑𝑉 𝑊)
352, 9, 4, 10, 5, 17, 18, 194atexlemtlw 40165 . . . . . . 7 (𝜑𝑇 𝑊)
368, 5atbase 39387 . . . . . . . . 9 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
3720, 36syl 17 . . . . . . . 8 (𝜑𝑉 ∈ (Base‘𝐾))
388, 5atbase 39387 . . . . . . . . 9 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
3922, 38syl 17 . . . . . . . 8 (𝜑𝑇 ∈ (Base‘𝐾))
408, 9, 4latjle12 18356 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑉 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑉 𝑊𝑇 𝑊) ↔ (𝑉 𝑇) 𝑊))
413, 37, 39, 31, 40syl13anc 1374 . . . . . . 7 (𝜑 → ((𝑉 𝑊𝑇 𝑊) ↔ (𝑉 𝑇) 𝑊))
4234, 35, 41mpbi2and 712 . . . . . 6 (𝜑 → (𝑉 𝑇) 𝑊)
438, 5atbase 39387 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
4421, 43syl 17 . . . . . . 7 (𝜑𝑄 ∈ (Base‘𝐾))
4524atexlemk 40145 . . . . . . . 8 (𝜑𝐾 ∈ HL)
468, 4, 5hlatjcl 39465 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑉𝐴𝑇𝐴) → (𝑉 𝑇) ∈ (Base‘𝐾))
4745, 20, 22, 46syl3anc 1373 . . . . . . 7 (𝜑 → (𝑉 𝑇) ∈ (Base‘𝐾))
488, 9lattr 18350 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑉 𝑇) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑄 (𝑉 𝑇) ∧ (𝑉 𝑇) 𝑊) → 𝑄 𝑊))
493, 44, 47, 31, 48syl13anc 1374 . . . . . 6 (𝜑 → ((𝑄 (𝑉 𝑇) ∧ (𝑉 𝑇) 𝑊) → 𝑄 𝑊))
5042, 49mpan2d 694 . . . . 5 (𝜑 → (𝑄 (𝑉 𝑇) → 𝑄 𝑊))
5130, 50syld 47 . . . 4 (𝜑 → (𝑉 (𝑄 𝑇) → 𝑄 𝑊))
5215, 51mtod 198 . . 3 (𝜑 → ¬ 𝑉 (𝑄 𝑇))
53 nbrne2 5109 . . 3 ((𝐶 (𝑄 𝑇) ∧ ¬ 𝑉 (𝑄 𝑇)) → 𝐶𝑉)
5413, 52, 53syl2anc 584 . 2 (𝜑𝐶𝑉)
5524atexlemw 40146 . . . 4 (𝜑𝑊𝐻)
5645, 55jca 511 . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
5724atexlempw 40147 . . 3 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5824atexlems 40150 . . 3 (𝜑𝑆𝐴)
592, 9, 4, 10, 5, 17, 18, 19, 14atexlemc 40167 . . 3 (𝜑𝐶𝐴)
602, 9, 4, 54atexlempns 40160 . . 3 (𝜑𝑃𝑆)
618, 9, 10latmle2 18371 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑃 𝑆))
623, 6, 7, 61syl3anc 1373 . . . 4 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑃 𝑆))
631, 62eqbrtrid 5124 . . 3 (𝜑𝐶 (𝑃 𝑆))
649, 4, 10, 5, 17, 19lhpat3 40144 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑆𝐴𝐶𝐴) ∧ (𝑃𝑆𝐶 (𝑃 𝑆))) → (¬ 𝐶 𝑊𝐶𝑉))
6556, 57, 58, 59, 60, 63, 64syl222anc 1388 . 2 (𝜑 → (¬ 𝐶 𝑊𝐶𝑉))
6654, 65mpbird 257 1 (𝜑 → ¬ 𝐶 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337  Atomscatm 39361  CvLatclc 39363  HLchlt 39448  LHypclh 40082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39274  df-ol 39276  df-oml 39277  df-covers 39364  df-ats 39365  df-atl 39396  df-cvlat 39420  df-hlat 39449  df-llines 39596  df-lplanes 39597  df-lhyp 40086
This theorem is referenced by:  4atexlemex2  40169  4atexlemcnd  40170
  Copyright terms: Public domain W3C validator