Proof of Theorem 4atexlemnclw
Step | Hyp | Ref
| Expression |
1 | | 4thatlem0.c |
. . . 4
⊢ 𝐶 = ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) |
2 | | 4thatlem.ph |
. . . . . 6
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
3 | 2 | 4atexlemkl 38071 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ Lat) |
4 | | 4thatlem0.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
5 | | 4thatlem0.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
6 | 2, 4, 5 | 4atexlemqtb 38075 |
. . . . 5
⊢ (𝜑 → (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) |
7 | 2, 4, 5 | 4atexlempsb 38074 |
. . . . 5
⊢ (𝜑 → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
8 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
9 | | 4thatlem0.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
10 | | 4thatlem0.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
11 | 8, 9, 10 | latmle1 18182 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ (𝑄 ∨ 𝑇)) |
12 | 3, 6, 7, 11 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ (𝑄 ∨ 𝑇)) |
13 | 1, 12 | eqbrtrid 5109 |
. . 3
⊢ (𝜑 → 𝐶 ≤ (𝑄 ∨ 𝑇)) |
14 | | simp13r 1288 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑄 ≤ 𝑊) |
15 | 2, 14 | sylbi 216 |
. . . 4
⊢ (𝜑 → ¬ 𝑄 ≤ 𝑊) |
16 | 2 | 4atexlemkc 38072 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ CvLat) |
17 | | 4thatlem0.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
18 | | 4thatlem0.u |
. . . . . . 7
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
19 | | 4thatlem0.v |
. . . . . . 7
⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
20 | 2, 9, 4, 10, 5, 17, 18, 19 | 4atexlemv 38079 |
. . . . . 6
⊢ (𝜑 → 𝑉 ∈ 𝐴) |
21 | 2 | 4atexlemq 38065 |
. . . . . 6
⊢ (𝜑 → 𝑄 ∈ 𝐴) |
22 | 2 | 4atexlemt 38067 |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈ 𝐴) |
23 | 2, 9, 4, 10, 5, 17, 18 | 4atexlemu 38078 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ 𝐴) |
24 | 2, 9, 4, 10, 5, 17, 18, 19 | 4atexlemunv 38080 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ≠ 𝑉) |
25 | 2 | 4atexlemutvt 38068 |
. . . . . . 7
⊢ (𝜑 → (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇)) |
26 | 5, 4 | cvlsupr6 37361 |
. . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ≠ 𝑉 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) → 𝑇 ≠ 𝑉) |
27 | 26 | necomd 2999 |
. . . . . . 7
⊢ ((𝐾 ∈ CvLat ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ≠ 𝑉 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) → 𝑉 ≠ 𝑇) |
28 | 16, 23, 20, 22, 24, 25, 27 | syl132anc 1387 |
. . . . . 6
⊢ (𝜑 → 𝑉 ≠ 𝑇) |
29 | 9, 4, 5 | cvlatexch2 37351 |
. . . . . 6
⊢ ((𝐾 ∈ CvLat ∧ (𝑉 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ 𝑉 ≠ 𝑇) → (𝑉 ≤ (𝑄 ∨ 𝑇) → 𝑄 ≤ (𝑉 ∨ 𝑇))) |
30 | 16, 20, 21, 22, 28, 29 | syl131anc 1382 |
. . . . 5
⊢ (𝜑 → (𝑉 ≤ (𝑄 ∨ 𝑇) → 𝑄 ≤ (𝑉 ∨ 𝑇))) |
31 | 2, 17 | 4atexlemwb 38073 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ (Base‘𝐾)) |
32 | 8, 9, 10 | latmle2 18183 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ 𝑊) |
33 | 3, 7, 31, 32 | syl3anc 1370 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ 𝑊) |
34 | 19, 33 | eqbrtrid 5109 |
. . . . . . 7
⊢ (𝜑 → 𝑉 ≤ 𝑊) |
35 | 2, 9, 4, 10, 5, 17, 18, 19 | 4atexlemtlw 38081 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ≤ 𝑊) |
36 | 8, 5 | atbase 37303 |
. . . . . . . . 9
⊢ (𝑉 ∈ 𝐴 → 𝑉 ∈ (Base‘𝐾)) |
37 | 20, 36 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑉 ∈ (Base‘𝐾)) |
38 | 8, 5 | atbase 37303 |
. . . . . . . . 9
⊢ (𝑇 ∈ 𝐴 → 𝑇 ∈ (Base‘𝐾)) |
39 | 22, 38 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ (Base‘𝐾)) |
40 | 8, 9, 4 | latjle12 18168 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑉 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑉 ≤ 𝑊 ∧ 𝑇 ≤ 𝑊) ↔ (𝑉 ∨ 𝑇) ≤ 𝑊)) |
41 | 3, 37, 39, 31, 40 | syl13anc 1371 |
. . . . . . 7
⊢ (𝜑 → ((𝑉 ≤ 𝑊 ∧ 𝑇 ≤ 𝑊) ↔ (𝑉 ∨ 𝑇) ≤ 𝑊)) |
42 | 34, 35, 41 | mpbi2and 709 |
. . . . . 6
⊢ (𝜑 → (𝑉 ∨ 𝑇) ≤ 𝑊) |
43 | 8, 5 | atbase 37303 |
. . . . . . . 8
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
44 | 21, 43 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈ (Base‘𝐾)) |
45 | 2 | 4atexlemk 38061 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ HL) |
46 | 8, 4, 5 | hlatjcl 37381 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑉 ∨ 𝑇) ∈ (Base‘𝐾)) |
47 | 45, 20, 22, 46 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → (𝑉 ∨ 𝑇) ∈ (Base‘𝐾)) |
48 | 8, 9 | lattr 18162 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑉 ∨ 𝑇) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑄 ≤ (𝑉 ∨ 𝑇) ∧ (𝑉 ∨ 𝑇) ≤ 𝑊) → 𝑄 ≤ 𝑊)) |
49 | 3, 44, 47, 31, 48 | syl13anc 1371 |
. . . . . 6
⊢ (𝜑 → ((𝑄 ≤ (𝑉 ∨ 𝑇) ∧ (𝑉 ∨ 𝑇) ≤ 𝑊) → 𝑄 ≤ 𝑊)) |
50 | 42, 49 | mpan2d 691 |
. . . . 5
⊢ (𝜑 → (𝑄 ≤ (𝑉 ∨ 𝑇) → 𝑄 ≤ 𝑊)) |
51 | 30, 50 | syld 47 |
. . . 4
⊢ (𝜑 → (𝑉 ≤ (𝑄 ∨ 𝑇) → 𝑄 ≤ 𝑊)) |
52 | 15, 51 | mtod 197 |
. . 3
⊢ (𝜑 → ¬ 𝑉 ≤ (𝑄 ∨ 𝑇)) |
53 | | nbrne2 5094 |
. . 3
⊢ ((𝐶 ≤ (𝑄 ∨ 𝑇) ∧ ¬ 𝑉 ≤ (𝑄 ∨ 𝑇)) → 𝐶 ≠ 𝑉) |
54 | 13, 52, 53 | syl2anc 584 |
. 2
⊢ (𝜑 → 𝐶 ≠ 𝑉) |
55 | 2 | 4atexlemw 38062 |
. . . 4
⊢ (𝜑 → 𝑊 ∈ 𝐻) |
56 | 45, 55 | jca 512 |
. . 3
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
57 | 2 | 4atexlempw 38063 |
. . 3
⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
58 | 2 | 4atexlems 38066 |
. . 3
⊢ (𝜑 → 𝑆 ∈ 𝐴) |
59 | 2, 9, 4, 10, 5, 17, 18, 19, 1 | 4atexlemc 38083 |
. . 3
⊢ (𝜑 → 𝐶 ∈ 𝐴) |
60 | 2, 9, 4, 5 | 4atexlempns 38076 |
. . 3
⊢ (𝜑 → 𝑃 ≠ 𝑆) |
61 | 8, 9, 10 | latmle2 18183 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ (𝑃 ∨ 𝑆)) |
62 | 3, 6, 7, 61 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ (𝑃 ∨ 𝑆)) |
63 | 1, 62 | eqbrtrid 5109 |
. . 3
⊢ (𝜑 → 𝐶 ≤ (𝑃 ∨ 𝑆)) |
64 | 9, 4, 10, 5, 17, 19 | lhpat3 38060 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ (𝑃 ≠ 𝑆 ∧ 𝐶 ≤ (𝑃 ∨ 𝑆))) → (¬ 𝐶 ≤ 𝑊 ↔ 𝐶 ≠ 𝑉)) |
65 | 56, 57, 58, 59, 60, 63, 64 | syl222anc 1385 |
. 2
⊢ (𝜑 → (¬ 𝐶 ≤ 𝑊 ↔ 𝐶 ≠ 𝑉)) |
66 | 54, 65 | mpbird 256 |
1
⊢ (𝜑 → ¬ 𝐶 ≤ 𝑊) |