Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemnclw Structured version   Visualization version   GIF version

Theorem 4atexlemnclw 40072
Description: Lemma for 4atexlem7 40077. (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
4thatlem0.c 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
Assertion
Ref Expression
4atexlemnclw (𝜑 → ¬ 𝐶 𝑊)

Proof of Theorem 4atexlemnclw
StepHypRef Expression
1 4thatlem0.c . . . 4 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
2 4thatlem.ph . . . . . 6 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
324atexlemkl 40059 . . . . 5 (𝜑𝐾 ∈ Lat)
4 4thatlem0.j . . . . . 6 = (join‘𝐾)
5 4thatlem0.a . . . . . 6 𝐴 = (Atoms‘𝐾)
62, 4, 54atexlemqtb 40063 . . . . 5 (𝜑 → (𝑄 𝑇) ∈ (Base‘𝐾))
72, 4, 54atexlempsb 40062 . . . . 5 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
8 eqid 2737 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
9 4thatlem0.l . . . . . 6 = (le‘𝐾)
10 4thatlem0.m . . . . . 6 = (meet‘𝐾)
118, 9, 10latmle1 18509 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
123, 6, 7, 11syl3anc 1373 . . . 4 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
131, 12eqbrtrid 5178 . . 3 (𝜑𝐶 (𝑄 𝑇))
14 simp13r 1290 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑄 𝑊)
152, 14sylbi 217 . . . 4 (𝜑 → ¬ 𝑄 𝑊)
1624atexlemkc 40060 . . . . . 6 (𝜑𝐾 ∈ CvLat)
17 4thatlem0.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
18 4thatlem0.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
19 4thatlem0.v . . . . . . 7 𝑉 = ((𝑃 𝑆) 𝑊)
202, 9, 4, 10, 5, 17, 18, 194atexlemv 40067 . . . . . 6 (𝜑𝑉𝐴)
2124atexlemq 40053 . . . . . 6 (𝜑𝑄𝐴)
2224atexlemt 40055 . . . . . 6 (𝜑𝑇𝐴)
232, 9, 4, 10, 5, 17, 184atexlemu 40066 . . . . . . 7 (𝜑𝑈𝐴)
242, 9, 4, 10, 5, 17, 18, 194atexlemunv 40068 . . . . . . 7 (𝜑𝑈𝑉)
2524atexlemutvt 40056 . . . . . . 7 (𝜑 → (𝑈 𝑇) = (𝑉 𝑇))
265, 4cvlsupr6 39348 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑈𝐴𝑉𝐴𝑇𝐴) ∧ (𝑈𝑉 ∧ (𝑈 𝑇) = (𝑉 𝑇))) → 𝑇𝑉)
2726necomd 2996 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑈𝐴𝑉𝐴𝑇𝐴) ∧ (𝑈𝑉 ∧ (𝑈 𝑇) = (𝑉 𝑇))) → 𝑉𝑇)
2816, 23, 20, 22, 24, 25, 27syl132anc 1390 . . . . . 6 (𝜑𝑉𝑇)
299, 4, 5cvlatexch2 39338 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑉𝐴𝑄𝐴𝑇𝐴) ∧ 𝑉𝑇) → (𝑉 (𝑄 𝑇) → 𝑄 (𝑉 𝑇)))
3016, 20, 21, 22, 28, 29syl131anc 1385 . . . . 5 (𝜑 → (𝑉 (𝑄 𝑇) → 𝑄 (𝑉 𝑇)))
312, 174atexlemwb 40061 . . . . . . . . 9 (𝜑𝑊 ∈ (Base‘𝐾))
328, 9, 10latmle2 18510 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) 𝑊)
333, 7, 31, 32syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝑃 𝑆) 𝑊) 𝑊)
3419, 33eqbrtrid 5178 . . . . . . 7 (𝜑𝑉 𝑊)
352, 9, 4, 10, 5, 17, 18, 194atexlemtlw 40069 . . . . . . 7 (𝜑𝑇 𝑊)
368, 5atbase 39290 . . . . . . . . 9 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
3720, 36syl 17 . . . . . . . 8 (𝜑𝑉 ∈ (Base‘𝐾))
388, 5atbase 39290 . . . . . . . . 9 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
3922, 38syl 17 . . . . . . . 8 (𝜑𝑇 ∈ (Base‘𝐾))
408, 9, 4latjle12 18495 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑉 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑉 𝑊𝑇 𝑊) ↔ (𝑉 𝑇) 𝑊))
413, 37, 39, 31, 40syl13anc 1374 . . . . . . 7 (𝜑 → ((𝑉 𝑊𝑇 𝑊) ↔ (𝑉 𝑇) 𝑊))
4234, 35, 41mpbi2and 712 . . . . . 6 (𝜑 → (𝑉 𝑇) 𝑊)
438, 5atbase 39290 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
4421, 43syl 17 . . . . . . 7 (𝜑𝑄 ∈ (Base‘𝐾))
4524atexlemk 40049 . . . . . . . 8 (𝜑𝐾 ∈ HL)
468, 4, 5hlatjcl 39368 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑉𝐴𝑇𝐴) → (𝑉 𝑇) ∈ (Base‘𝐾))
4745, 20, 22, 46syl3anc 1373 . . . . . . 7 (𝜑 → (𝑉 𝑇) ∈ (Base‘𝐾))
488, 9lattr 18489 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑉 𝑇) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑄 (𝑉 𝑇) ∧ (𝑉 𝑇) 𝑊) → 𝑄 𝑊))
493, 44, 47, 31, 48syl13anc 1374 . . . . . 6 (𝜑 → ((𝑄 (𝑉 𝑇) ∧ (𝑉 𝑇) 𝑊) → 𝑄 𝑊))
5042, 49mpan2d 694 . . . . 5 (𝜑 → (𝑄 (𝑉 𝑇) → 𝑄 𝑊))
5130, 50syld 47 . . . 4 (𝜑 → (𝑉 (𝑄 𝑇) → 𝑄 𝑊))
5215, 51mtod 198 . . 3 (𝜑 → ¬ 𝑉 (𝑄 𝑇))
53 nbrne2 5163 . . 3 ((𝐶 (𝑄 𝑇) ∧ ¬ 𝑉 (𝑄 𝑇)) → 𝐶𝑉)
5413, 52, 53syl2anc 584 . 2 (𝜑𝐶𝑉)
5524atexlemw 40050 . . . 4 (𝜑𝑊𝐻)
5645, 55jca 511 . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
5724atexlempw 40051 . . 3 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5824atexlems 40054 . . 3 (𝜑𝑆𝐴)
592, 9, 4, 10, 5, 17, 18, 19, 14atexlemc 40071 . . 3 (𝜑𝐶𝐴)
602, 9, 4, 54atexlempns 40064 . . 3 (𝜑𝑃𝑆)
618, 9, 10latmle2 18510 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑃 𝑆))
623, 6, 7, 61syl3anc 1373 . . . 4 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑃 𝑆))
631, 62eqbrtrid 5178 . . 3 (𝜑𝐶 (𝑃 𝑆))
649, 4, 10, 5, 17, 19lhpat3 40048 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑆𝐴𝐶𝐴) ∧ (𝑃𝑆𝐶 (𝑃 𝑆))) → (¬ 𝐶 𝑊𝐶𝑉))
6556, 57, 58, 59, 60, 63, 64syl222anc 1388 . 2 (𝜑 → (¬ 𝐶 𝑊𝐶𝑉))
6654, 65mpbird 257 1 (𝜑 → ¬ 𝐶 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  joincjn 18357  meetcmee 18358  Latclat 18476  Atomscatm 39264  CvLatclc 39266  HLchlt 39351  LHypclh 39986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501  df-lhyp 39990
This theorem is referenced by:  4atexlemex2  40073  4atexlemcnd  40074
  Copyright terms: Public domain W3C validator