Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemnclw Structured version   Visualization version   GIF version

Theorem 4atexlemnclw 38929
Description: Lemma for 4atexlem7 38934. (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (πœ‘ ↔ (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))))
4thatlem0.l ≀ = (leβ€˜πΎ)
4thatlem0.j ∨ = (joinβ€˜πΎ)
4thatlem0.m ∧ = (meetβ€˜πΎ)
4thatlem0.a 𝐴 = (Atomsβ€˜πΎ)
4thatlem0.h 𝐻 = (LHypβ€˜πΎ)
4thatlem0.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
4thatlem0.v 𝑉 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
4thatlem0.c 𝐢 = ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))
Assertion
Ref Expression
4atexlemnclw (πœ‘ β†’ Β¬ 𝐢 ≀ π‘Š)

Proof of Theorem 4atexlemnclw
StepHypRef Expression
1 4thatlem0.c . . . 4 𝐢 = ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))
2 4thatlem.ph . . . . . 6 (πœ‘ ↔ (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))))
324atexlemkl 38916 . . . . 5 (πœ‘ β†’ 𝐾 ∈ Lat)
4 4thatlem0.j . . . . . 6 ∨ = (joinβ€˜πΎ)
5 4thatlem0.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
62, 4, 54atexlemqtb 38920 . . . . 5 (πœ‘ β†’ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
72, 4, 54atexlempsb 38919 . . . . 5 (πœ‘ β†’ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
8 eqid 2732 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
9 4thatlem0.l . . . . . 6 ≀ = (leβ€˜πΎ)
10 4thatlem0.m . . . . . 6 ∧ = (meetβ€˜πΎ)
118, 9, 10latmle1 18413 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ (𝑄 ∨ 𝑇))
123, 6, 7, 11syl3anc 1371 . . . 4 (πœ‘ β†’ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ (𝑄 ∨ 𝑇))
131, 12eqbrtrid 5182 . . 3 (πœ‘ β†’ 𝐢 ≀ (𝑄 ∨ 𝑇))
14 simp13r 1289 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑄 ≀ π‘Š)
152, 14sylbi 216 . . . 4 (πœ‘ β†’ Β¬ 𝑄 ≀ π‘Š)
1624atexlemkc 38917 . . . . . 6 (πœ‘ β†’ 𝐾 ∈ CvLat)
17 4thatlem0.h . . . . . . 7 𝐻 = (LHypβ€˜πΎ)
18 4thatlem0.u . . . . . . 7 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
19 4thatlem0.v . . . . . . 7 𝑉 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
202, 9, 4, 10, 5, 17, 18, 194atexlemv 38924 . . . . . 6 (πœ‘ β†’ 𝑉 ∈ 𝐴)
2124atexlemq 38910 . . . . . 6 (πœ‘ β†’ 𝑄 ∈ 𝐴)
2224atexlemt 38912 . . . . . 6 (πœ‘ β†’ 𝑇 ∈ 𝐴)
232, 9, 4, 10, 5, 17, 184atexlemu 38923 . . . . . . 7 (πœ‘ β†’ π‘ˆ ∈ 𝐴)
242, 9, 4, 10, 5, 17, 18, 194atexlemunv 38925 . . . . . . 7 (πœ‘ β†’ π‘ˆ β‰  𝑉)
2524atexlemutvt 38913 . . . . . . 7 (πœ‘ β†’ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))
265, 4cvlsupr6 38205 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ β‰  𝑉 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) β†’ 𝑇 β‰  𝑉)
2726necomd 2996 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ β‰  𝑉 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) β†’ 𝑉 β‰  𝑇)
2816, 23, 20, 22, 24, 25, 27syl132anc 1388 . . . . . 6 (πœ‘ β†’ 𝑉 β‰  𝑇)
299, 4, 5cvlatexch2 38195 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑉 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ 𝑉 β‰  𝑇) β†’ (𝑉 ≀ (𝑄 ∨ 𝑇) β†’ 𝑄 ≀ (𝑉 ∨ 𝑇)))
3016, 20, 21, 22, 28, 29syl131anc 1383 . . . . 5 (πœ‘ β†’ (𝑉 ≀ (𝑄 ∨ 𝑇) β†’ 𝑄 ≀ (𝑉 ∨ 𝑇)))
312, 174atexlemwb 38918 . . . . . . . . 9 (πœ‘ β†’ π‘Š ∈ (Baseβ€˜πΎ))
328, 9, 10latmle2 18414 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑆) ∧ π‘Š) ≀ π‘Š)
333, 7, 31, 32syl3anc 1371 . . . . . . . 8 (πœ‘ β†’ ((𝑃 ∨ 𝑆) ∧ π‘Š) ≀ π‘Š)
3419, 33eqbrtrid 5182 . . . . . . 7 (πœ‘ β†’ 𝑉 ≀ π‘Š)
352, 9, 4, 10, 5, 17, 18, 194atexlemtlw 38926 . . . . . . 7 (πœ‘ β†’ 𝑇 ≀ π‘Š)
368, 5atbase 38147 . . . . . . . . 9 (𝑉 ∈ 𝐴 β†’ 𝑉 ∈ (Baseβ€˜πΎ))
3720, 36syl 17 . . . . . . . 8 (πœ‘ β†’ 𝑉 ∈ (Baseβ€˜πΎ))
388, 5atbase 38147 . . . . . . . . 9 (𝑇 ∈ 𝐴 β†’ 𝑇 ∈ (Baseβ€˜πΎ))
3922, 38syl 17 . . . . . . . 8 (πœ‘ β†’ 𝑇 ∈ (Baseβ€˜πΎ))
408, 9, 4latjle12 18399 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑉 ∈ (Baseβ€˜πΎ) ∧ 𝑇 ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ))) β†’ ((𝑉 ≀ π‘Š ∧ 𝑇 ≀ π‘Š) ↔ (𝑉 ∨ 𝑇) ≀ π‘Š))
413, 37, 39, 31, 40syl13anc 1372 . . . . . . 7 (πœ‘ β†’ ((𝑉 ≀ π‘Š ∧ 𝑇 ≀ π‘Š) ↔ (𝑉 ∨ 𝑇) ≀ π‘Š))
4234, 35, 41mpbi2and 710 . . . . . 6 (πœ‘ β†’ (𝑉 ∨ 𝑇) ≀ π‘Š)
438, 5atbase 38147 . . . . . . . 8 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
4421, 43syl 17 . . . . . . 7 (πœ‘ β†’ 𝑄 ∈ (Baseβ€˜πΎ))
4524atexlemk 38906 . . . . . . . 8 (πœ‘ β†’ 𝐾 ∈ HL)
468, 4, 5hlatjcl 38225 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑉 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
4745, 20, 22, 46syl3anc 1371 . . . . . . 7 (πœ‘ β†’ (𝑉 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
488, 9lattr 18393 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Baseβ€˜πΎ) ∧ (𝑉 ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ))) β†’ ((𝑄 ≀ (𝑉 ∨ 𝑇) ∧ (𝑉 ∨ 𝑇) ≀ π‘Š) β†’ 𝑄 ≀ π‘Š))
493, 44, 47, 31, 48syl13anc 1372 . . . . . 6 (πœ‘ β†’ ((𝑄 ≀ (𝑉 ∨ 𝑇) ∧ (𝑉 ∨ 𝑇) ≀ π‘Š) β†’ 𝑄 ≀ π‘Š))
5042, 49mpan2d 692 . . . . 5 (πœ‘ β†’ (𝑄 ≀ (𝑉 ∨ 𝑇) β†’ 𝑄 ≀ π‘Š))
5130, 50syld 47 . . . 4 (πœ‘ β†’ (𝑉 ≀ (𝑄 ∨ 𝑇) β†’ 𝑄 ≀ π‘Š))
5215, 51mtod 197 . . 3 (πœ‘ β†’ Β¬ 𝑉 ≀ (𝑄 ∨ 𝑇))
53 nbrne2 5167 . . 3 ((𝐢 ≀ (𝑄 ∨ 𝑇) ∧ Β¬ 𝑉 ≀ (𝑄 ∨ 𝑇)) β†’ 𝐢 β‰  𝑉)
5413, 52, 53syl2anc 584 . 2 (πœ‘ β†’ 𝐢 β‰  𝑉)
5524atexlemw 38907 . . . 4 (πœ‘ β†’ π‘Š ∈ 𝐻)
5645, 55jca 512 . . 3 (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
5724atexlempw 38908 . . 3 (πœ‘ β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
5824atexlems 38911 . . 3 (πœ‘ β†’ 𝑆 ∈ 𝐴)
592, 9, 4, 10, 5, 17, 18, 19, 14atexlemc 38928 . . 3 (πœ‘ β†’ 𝐢 ∈ 𝐴)
602, 9, 4, 54atexlempns 38921 . . 3 (πœ‘ β†’ 𝑃 β‰  𝑆)
618, 9, 10latmle2 18414 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ (𝑃 ∨ 𝑆))
623, 6, 7, 61syl3anc 1371 . . . 4 (πœ‘ β†’ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ (𝑃 ∨ 𝑆))
631, 62eqbrtrid 5182 . . 3 (πœ‘ β†’ 𝐢 ≀ (𝑃 ∨ 𝑆))
649, 4, 10, 5, 17, 19lhpat3 38905 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ 𝐢 ∈ 𝐴) ∧ (𝑃 β‰  𝑆 ∧ 𝐢 ≀ (𝑃 ∨ 𝑆))) β†’ (Β¬ 𝐢 ≀ π‘Š ↔ 𝐢 β‰  𝑉))
6556, 57, 58, 59, 60, 63, 64syl222anc 1386 . 2 (πœ‘ β†’ (Β¬ 𝐢 ≀ π‘Š ↔ 𝐢 β‰  𝑉))
6654, 65mpbird 256 1 (πœ‘ β†’ Β¬ 𝐢 ≀ π‘Š)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  Latclat 18380  Atomscatm 38121  CvLatclc 38123  HLchlt 38208  LHypclh 38843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-llines 38357  df-lplanes 38358  df-lhyp 38847
This theorem is referenced by:  4atexlemex2  38930  4atexlemcnd  38931
  Copyright terms: Public domain W3C validator