Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg27b Structured version   Visualization version   GIF version

Theorem cdlemg27b 37313
Description: TODO: Fix comment. (Contributed by NM, 28-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg31.n 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
Assertion
Ref Expression
cdlemg27b ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ (𝑅𝐹) (𝑄 𝑧))

Proof of Theorem cdlemg27b
StepHypRef Expression
1 simp11 1194 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1195 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp13 1196 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simp22 1198 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑣𝐴𝑣 𝑊))
5 simp23l 1285 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐹𝑇)
6 simp31 1200 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑣 ≠ (𝑅𝐹))
7 cdlemg12.l . . . . . 6 = (le‘𝐾)
8 cdlemg12.j . . . . . 6 = (join‘𝐾)
9 cdlemg12.m . . . . . 6 = (meet‘𝐾)
10 cdlemg12.a . . . . . 6 𝐴 = (Atoms‘𝐾)
11 cdlemg12.h . . . . . 6 𝐻 = (LHyp‘𝐾)
12 cdlemg12.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
13 cdlemg12b.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
14 cdlemg31.n . . . . . 6 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
157, 8, 9, 10, 11, 12, 13, 14cdlemg31b0a 37312 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹))) → (𝑁𝐴𝑁 = (0.‘𝐾)))
161, 2, 3, 4, 5, 6, 15syl132anc 1379 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑁𝐴𝑁 = (0.‘𝐾)))
17 simp23r 1286 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧𝑁)
1817adantr 481 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ (𝑁𝐴𝑁 = (0.‘𝐾))) → 𝑧𝑁)
19 simp11l 1275 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ HL)
2019adantr 481 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁𝐴) → 𝐾 ∈ HL)
21 hlatl 35977 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2220, 21syl 17 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁𝐴) → 𝐾 ∈ AtLat)
23 simpl21 1242 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁𝐴) → 𝑧𝐴)
24 simpr 485 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁𝐴) → 𝑁𝐴)
257, 10atcmp 35928 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑧𝐴𝑁𝐴) → (𝑧 𝑁𝑧 = 𝑁))
2622, 23, 24, 25syl3anc 1362 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁𝐴) → (𝑧 𝑁𝑧 = 𝑁))
2726necon3bbid 3019 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁𝐴) → (¬ 𝑧 𝑁𝑧𝑁))
2819adantr 481 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → 𝐾 ∈ HL)
2928, 21syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → 𝐾 ∈ AtLat)
30 simpl21 1242 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → 𝑧𝐴)
31 eqid 2793 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
327, 31, 10atnle0 35926 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ 𝑧𝐴) → ¬ 𝑧 (0.‘𝐾))
3329, 30, 32syl2anc 584 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → ¬ 𝑧 (0.‘𝐾))
34 simpr 485 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → 𝑁 = (0.‘𝐾))
3534breq2d 4968 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → (𝑧 𝑁𝑧 (0.‘𝐾)))
3633, 35mtbird 326 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → ¬ 𝑧 𝑁)
3717adantr 481 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → 𝑧𝑁)
3836, 372thd 266 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → (¬ 𝑧 𝑁𝑧𝑁))
3927, 38jaodan 950 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ (𝑁𝐴𝑁 = (0.‘𝐾))) → (¬ 𝑧 𝑁𝑧𝑁))
4018, 39mpbird 258 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ (𝑁𝐴𝑁 = (0.‘𝐾))) → ¬ 𝑧 𝑁)
4116, 40mpdan 683 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ 𝑧 𝑁)
42 simp32 1201 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧 (𝑃 𝑣))
4319hllatd 35981 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ Lat)
44 simp21 1197 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧𝐴)
45 eqid 2793 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
4645, 10atbase 35906 . . . . . . . 8 (𝑧𝐴𝑧 ∈ (Base‘𝐾))
4744, 46syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧 ∈ (Base‘𝐾))
48 simp12l 1277 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃𝐴)
49 simp22l 1283 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑣𝐴)
5045, 8, 10hlatjcl 35984 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴) → (𝑃 𝑣) ∈ (Base‘𝐾))
5119, 48, 49, 50syl3anc 1362 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃 𝑣) ∈ (Base‘𝐾))
52 simp13l 1279 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑄𝐴)
53 simp33 1202 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ≠ 𝑃)
547, 10, 11, 12, 13trlat 36786 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
551, 2, 5, 53, 54syl112anc 1365 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
5645, 8, 10hlatjcl 35984 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝑅𝐹) ∈ 𝐴) → (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾))
5719, 52, 55, 56syl3anc 1362 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾))
5845, 7, 9latlem12 17505 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑧 ∈ (Base‘𝐾) ∧ (𝑃 𝑣) ∈ (Base‘𝐾) ∧ (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾))) → ((𝑧 (𝑃 𝑣) ∧ 𝑧 (𝑄 (𝑅𝐹))) ↔ 𝑧 ((𝑃 𝑣) (𝑄 (𝑅𝐹)))))
5943, 47, 51, 57, 58syl13anc 1363 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑧 (𝑃 𝑣) ∧ 𝑧 (𝑄 (𝑅𝐹))) ↔ 𝑧 ((𝑃 𝑣) (𝑄 (𝑅𝐹)))))
6014breq2i 4964 . . . . . 6 (𝑧 𝑁𝑧 ((𝑃 𝑣) (𝑄 (𝑅𝐹))))
6159, 60syl6bbr 290 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑧 (𝑃 𝑣) ∧ 𝑧 (𝑄 (𝑅𝐹))) ↔ 𝑧 𝑁))
6261biimpd 230 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑧 (𝑃 𝑣) ∧ 𝑧 (𝑄 (𝑅𝐹))) → 𝑧 𝑁))
6342, 62mpand 691 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑧 (𝑄 (𝑅𝐹)) → 𝑧 𝑁))
6441, 63mtod 199 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ 𝑧 (𝑄 (𝑅𝐹)))
657, 11, 12, 13trlle 36801 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
661, 5, 65syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) 𝑊)
67 simp13r 1280 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ 𝑄 𝑊)
68 nbrne2 4976 . . . 4 (((𝑅𝐹) 𝑊 ∧ ¬ 𝑄 𝑊) → (𝑅𝐹) ≠ 𝑄)
6966, 67, 68syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ≠ 𝑄)
707, 8, 10hlatexch1 36012 . . 3 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ 𝐴𝑧𝐴𝑄𝐴) ∧ (𝑅𝐹) ≠ 𝑄) → ((𝑅𝐹) (𝑄 𝑧) → 𝑧 (𝑄 (𝑅𝐹))))
7119, 55, 44, 52, 69, 70syl131anc 1374 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑅𝐹) (𝑄 𝑧) → 𝑧 (𝑄 (𝑅𝐹))))
7264, 71mtod 199 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ (𝑅𝐹) (𝑄 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3a 1078   = wceq 1520  wcel 2079  wne 2982   class class class wbr 4956  cfv 6217  (class class class)co 7007  Basecbs 16300  lecple 16389  joincjn 17371  meetcmee 17372  0.cp0 17464  Latclat 17472  Atomscatm 35880  AtLatcal 35881  HLchlt 35967  LHypclh 36601  LTrncltrn 36718  trLctrl 36775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-reu 3110  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-iun 4821  df-iin 4822  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-1st 7536  df-2nd 7537  df-map 8249  df-proset 17355  df-poset 17373  df-plt 17385  df-lub 17401  df-glb 17402  df-join 17403  df-meet 17404  df-p0 17466  df-p1 17467  df-lat 17473  df-clat 17535  df-oposet 35793  df-ol 35795  df-oml 35796  df-covers 35883  df-ats 35884  df-atl 35915  df-cvlat 35939  df-hlat 35968  df-llines 36115  df-psubsp 36120  df-pmap 36121  df-padd 36413  df-lhyp 36605  df-laut 36606  df-ldil 36721  df-ltrn 36722  df-trl 36776
This theorem is referenced by:  cdlemg28b  37320
  Copyright terms: Public domain W3C validator