Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg27b Structured version   Visualization version   GIF version

Theorem cdlemg27b 39159
Description: TODO: Fix comment. (Contributed by NM, 28-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg31.n 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
Assertion
Ref Expression
cdlemg27b ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ (𝑅𝐹) (𝑄 𝑧))

Proof of Theorem cdlemg27b
StepHypRef Expression
1 simp11 1203 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1204 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp13 1205 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simp22 1207 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑣𝐴𝑣 𝑊))
5 simp23l 1294 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐹𝑇)
6 simp31 1209 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑣 ≠ (𝑅𝐹))
7 cdlemg12.l . . . . . 6 = (le‘𝐾)
8 cdlemg12.j . . . . . 6 = (join‘𝐾)
9 cdlemg12.m . . . . . 6 = (meet‘𝐾)
10 cdlemg12.a . . . . . 6 𝐴 = (Atoms‘𝐾)
11 cdlemg12.h . . . . . 6 𝐻 = (LHyp‘𝐾)
12 cdlemg12.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
13 cdlemg12b.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
14 cdlemg31.n . . . . . 6 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
157, 8, 9, 10, 11, 12, 13, 14cdlemg31b0a 39158 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹))) → (𝑁𝐴𝑁 = (0.‘𝐾)))
161, 2, 3, 4, 5, 6, 15syl132anc 1388 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑁𝐴𝑁 = (0.‘𝐾)))
17 simp23r 1295 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧𝑁)
1817adantr 481 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ (𝑁𝐴𝑁 = (0.‘𝐾))) → 𝑧𝑁)
19 simp11l 1284 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ HL)
2019adantr 481 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁𝐴) → 𝐾 ∈ HL)
21 hlatl 37822 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2220, 21syl 17 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁𝐴) → 𝐾 ∈ AtLat)
23 simpl21 1251 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁𝐴) → 𝑧𝐴)
24 simpr 485 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁𝐴) → 𝑁𝐴)
257, 10atcmp 37773 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑧𝐴𝑁𝐴) → (𝑧 𝑁𝑧 = 𝑁))
2622, 23, 24, 25syl3anc 1371 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁𝐴) → (𝑧 𝑁𝑧 = 𝑁))
2726necon3bbid 2981 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁𝐴) → (¬ 𝑧 𝑁𝑧𝑁))
2819adantr 481 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → 𝐾 ∈ HL)
2928, 21syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → 𝐾 ∈ AtLat)
30 simpl21 1251 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → 𝑧𝐴)
31 eqid 2736 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
327, 31, 10atnle0 37771 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ 𝑧𝐴) → ¬ 𝑧 (0.‘𝐾))
3329, 30, 32syl2anc 584 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → ¬ 𝑧 (0.‘𝐾))
34 simpr 485 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → 𝑁 = (0.‘𝐾))
3534breq2d 5117 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → (𝑧 𝑁𝑧 (0.‘𝐾)))
3633, 35mtbird 324 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → ¬ 𝑧 𝑁)
3717adantr 481 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → 𝑧𝑁)
3836, 372thd 264 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → (¬ 𝑧 𝑁𝑧𝑁))
3927, 38jaodan 956 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ (𝑁𝐴𝑁 = (0.‘𝐾))) → (¬ 𝑧 𝑁𝑧𝑁))
4018, 39mpbird 256 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ (𝑁𝐴𝑁 = (0.‘𝐾))) → ¬ 𝑧 𝑁)
4116, 40mpdan 685 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ 𝑧 𝑁)
42 simp32 1210 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧 (𝑃 𝑣))
4319hllatd 37826 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ Lat)
44 simp21 1206 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧𝐴)
45 eqid 2736 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
4645, 10atbase 37751 . . . . . . . 8 (𝑧𝐴𝑧 ∈ (Base‘𝐾))
4744, 46syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧 ∈ (Base‘𝐾))
48 simp12l 1286 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃𝐴)
49 simp22l 1292 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑣𝐴)
5045, 8, 10hlatjcl 37829 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴) → (𝑃 𝑣) ∈ (Base‘𝐾))
5119, 48, 49, 50syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃 𝑣) ∈ (Base‘𝐾))
52 simp13l 1288 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑄𝐴)
53 simp33 1211 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ≠ 𝑃)
547, 10, 11, 12, 13trlat 38632 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
551, 2, 5, 53, 54syl112anc 1374 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
5645, 8, 10hlatjcl 37829 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝑅𝐹) ∈ 𝐴) → (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾))
5719, 52, 55, 56syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾))
5845, 7, 9latlem12 18355 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑧 ∈ (Base‘𝐾) ∧ (𝑃 𝑣) ∈ (Base‘𝐾) ∧ (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾))) → ((𝑧 (𝑃 𝑣) ∧ 𝑧 (𝑄 (𝑅𝐹))) ↔ 𝑧 ((𝑃 𝑣) (𝑄 (𝑅𝐹)))))
5943, 47, 51, 57, 58syl13anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑧 (𝑃 𝑣) ∧ 𝑧 (𝑄 (𝑅𝐹))) ↔ 𝑧 ((𝑃 𝑣) (𝑄 (𝑅𝐹)))))
6014breq2i 5113 . . . . . 6 (𝑧 𝑁𝑧 ((𝑃 𝑣) (𝑄 (𝑅𝐹))))
6159, 60bitr4di 288 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑧 (𝑃 𝑣) ∧ 𝑧 (𝑄 (𝑅𝐹))) ↔ 𝑧 𝑁))
6261biimpd 228 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑧 (𝑃 𝑣) ∧ 𝑧 (𝑄 (𝑅𝐹))) → 𝑧 𝑁))
6342, 62mpand 693 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑧 (𝑄 (𝑅𝐹)) → 𝑧 𝑁))
6441, 63mtod 197 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ 𝑧 (𝑄 (𝑅𝐹)))
657, 11, 12, 13trlle 38647 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
661, 5, 65syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) 𝑊)
67 simp13r 1289 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ 𝑄 𝑊)
68 nbrne2 5125 . . . 4 (((𝑅𝐹) 𝑊 ∧ ¬ 𝑄 𝑊) → (𝑅𝐹) ≠ 𝑄)
6966, 67, 68syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ≠ 𝑄)
707, 8, 10hlatexch1 37858 . . 3 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ 𝐴𝑧𝐴𝑄𝐴) ∧ (𝑅𝐹) ≠ 𝑄) → ((𝑅𝐹) (𝑄 𝑧) → 𝑧 (𝑄 (𝑅𝐹))))
7119, 55, 44, 52, 69, 70syl131anc 1383 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑅𝐹) (𝑄 𝑧) → 𝑧 (𝑄 (𝑅𝐹))))
7264, 71mtod 197 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ (𝑅𝐹) (𝑄 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140  joincjn 18200  meetcmee 18201  0.cp0 18312  Latclat 18320  Atomscatm 37725  AtLatcal 37726  HLchlt 37812  LHypclh 38447  LTrncltrn 38564  trLctrl 38621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-map 8767  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622
This theorem is referenced by:  cdlemg28b  39166
  Copyright terms: Public domain W3C validator