| Step | Hyp | Ref
| Expression |
| 1 | | hllat 39364 |
. . 3
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 2 | 1 | anim1i 615 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻)) |
| 3 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 4 | | trlval2.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
| 5 | | trlval2.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
| 6 | | trlval2.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
| 7 | | trlval2.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
| 8 | | trlval2.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 9 | | trlval2.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 10 | | trlval2.r |
. . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | trlval 40164 |
. . . 4
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = (℩𝑥 ∈ (Base‘𝐾)∀𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) |
| 12 | 11 | 3adant3 1133 |
. . 3
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐹) = (℩𝑥 ∈ (Base‘𝐾)∀𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) |
| 13 | | simp1l 1198 |
. . . . 5
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ Lat) |
| 14 | | simp3l 1202 |
. . . . . . 7
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) |
| 15 | 3, 7 | atbase 39290 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 16 | 14, 15 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ (Base‘𝐾)) |
| 17 | 3, 8, 9 | ltrncl 40127 |
. . . . . . 7
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ (Base‘𝐾)) → (𝐹‘𝑃) ∈ (Base‘𝐾)) |
| 18 | 16, 17 | syld3an3 1411 |
. . . . . 6
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘𝑃) ∈ (Base‘𝐾)) |
| 19 | 3, 5 | latjcl 18484 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹‘𝑃) ∈ (Base‘𝐾)) → (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾)) |
| 20 | 13, 16, 18, 19 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾)) |
| 21 | | simp1r 1199 |
. . . . . 6
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ 𝐻) |
| 22 | 3, 8 | lhpbase 40000 |
. . . . . 6
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 23 | 21, 22 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
| 24 | 3, 6 | latmcl 18485 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) ∈ (Base‘𝐾)) |
| 25 | 13, 20, 23, 24 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) ∈ (Base‘𝐾)) |
| 26 | | simpl3l 1229 |
. . . . . 6
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑃 ∈ 𝐴) |
| 27 | | simpl3r 1230 |
. . . . . 6
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → ¬ 𝑃 ≤ 𝑊) |
| 28 | | breq1 5146 |
. . . . . . . . . 10
⊢ (𝑞 = 𝑃 → (𝑞 ≤ 𝑊 ↔ 𝑃 ≤ 𝑊)) |
| 29 | 28 | notbid 318 |
. . . . . . . . 9
⊢ (𝑞 = 𝑃 → (¬ 𝑞 ≤ 𝑊 ↔ ¬ 𝑃 ≤ 𝑊)) |
| 30 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑃 → 𝑞 = 𝑃) |
| 31 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑃 → (𝐹‘𝑞) = (𝐹‘𝑃)) |
| 32 | 30, 31 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (𝑞 = 𝑃 → (𝑞 ∨ (𝐹‘𝑞)) = (𝑃 ∨ (𝐹‘𝑃))) |
| 33 | 32 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (𝑞 = 𝑃 → ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊) = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊)) |
| 34 | 33 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑞 = 𝑃 → (𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊) ↔ 𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊))) |
| 35 | 29, 34 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑞 = 𝑃 → ((¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) ↔ (¬ 𝑃 ≤ 𝑊 → 𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊)))) |
| 36 | 35 | rspcv 3618 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → (∀𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) → (¬ 𝑃 ≤ 𝑊 → 𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊)))) |
| 37 | 36 | com23 86 |
. . . . . 6
⊢ (𝑃 ∈ 𝐴 → (¬ 𝑃 ≤ 𝑊 → (∀𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) → 𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊)))) |
| 38 | 26, 27, 37 | sylc 65 |
. . . . 5
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) → 𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊))) |
| 39 | | simp11 1204 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴) → (𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻)) |
| 40 | | simp12 1205 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴) → 𝐹 ∈ 𝑇) |
| 41 | | simp13l 1289 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴) → 𝑃 ∈ 𝐴) |
| 42 | | simp13r 1290 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴) → ¬ 𝑃 ≤ 𝑊) |
| 43 | | simp3 1139 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴) |
| 44 | | simp2 1138 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴) → ¬ 𝑞 ≤ 𝑊) |
| 45 | 4, 5, 6, 7, 8, 9 | ltrnu 40123 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) |
| 46 | 39, 40, 41, 42, 43, 44, 45 | syl222anc 1388 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) |
| 47 | | eqeq2 2749 |
. . . . . . . . . . 11
⊢ (((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊) → (𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) ↔ 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) |
| 48 | 47 | biimpd 229 |
. . . . . . . . . 10
⊢ (((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊) → (𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) |
| 49 | 46, 48 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴) → (𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) |
| 50 | 49 | 3exp 1120 |
. . . . . . . 8
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (¬ 𝑞 ≤ 𝑊 → (𝑞 ∈ 𝐴 → (𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))))) |
| 51 | 50 | com24 95 |
. . . . . . 7
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) → (𝑞 ∈ 𝐴 → (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))))) |
| 52 | 51 | ralrimdv 3152 |
. . . . . 6
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) → ∀𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) |
| 53 | 52 | adantr 480 |
. . . . 5
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) → ∀𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) |
| 54 | 38, 53 | impbid 212 |
. . . 4
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) ↔ 𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊))) |
| 55 | 25, 54 | riota5 7417 |
. . 3
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (℩𝑥 ∈ (Base‘𝐾)∀𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊)) |
| 56 | 12, 55 | eqtrd 2777 |
. 2
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊)) |
| 57 | 2, 56 | syl3an1 1164 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊)) |