Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlval2 Structured version   Visualization version   GIF version

Theorem trlval2 39636
Description: The value of the trace of a lattice translation, given any atom 𝑃 not under the fiducial co-atom 𝑊. Note: this requires only the weaker assumption 𝐾 ∈ Lat; we use 𝐾 ∈ HL for convenience. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
trlval2.l = (le‘𝐾)
trlval2.j = (join‘𝐾)
trlval2.m = (meet‘𝐾)
trlval2.a 𝐴 = (Atoms‘𝐾)
trlval2.h 𝐻 = (LHyp‘𝐾)
trlval2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlval2.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlval2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))

Proof of Theorem trlval2
Dummy variables 𝑥 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hllat 38835 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
21anim1i 614 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ Lat ∧ 𝑊𝐻))
3 eqid 2728 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
4 trlval2.l . . . . 5 = (le‘𝐾)
5 trlval2.j . . . . 5 = (join‘𝐾)
6 trlval2.m . . . . 5 = (meet‘𝐾)
7 trlval2.a . . . . 5 𝐴 = (Atoms‘𝐾)
8 trlval2.h . . . . 5 𝐻 = (LHyp‘𝐾)
9 trlval2.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 trlval2.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
113, 4, 5, 6, 7, 8, 9, 10trlval 39635 . . . 4 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑥 ∈ (Base‘𝐾)∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))))
12113adant3 1130 . . 3 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = (𝑥 ∈ (Base‘𝐾)∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))))
13 simp1l 1195 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
14 simp3l 1199 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
153, 7atbase 38761 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1614, 15syl 17 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 ∈ (Base‘𝐾))
173, 8, 9ltrncl 39598 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃 ∈ (Base‘𝐾)) → (𝐹𝑃) ∈ (Base‘𝐾))
1816, 17syld3an3 1407 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ (Base‘𝐾))
193, 5latjcl 18431 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹𝑃) ∈ (Base‘𝐾)) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
2013, 16, 18, 19syl3anc 1369 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
21 simp1r 1196 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
223, 8lhpbase 39471 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2321, 22syl 17 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
243, 6latmcl 18432 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃)) 𝑊) ∈ (Base‘𝐾))
2513, 20, 23, 24syl3anc 1369 . . . 4 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐹𝑃)) 𝑊) ∈ (Base‘𝐾))
26 simpl3l 1226 . . . . . 6 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑃𝐴)
27 simpl3r 1227 . . . . . 6 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → ¬ 𝑃 𝑊)
28 breq1 5151 . . . . . . . . . 10 (𝑞 = 𝑃 → (𝑞 𝑊𝑃 𝑊))
2928notbid 318 . . . . . . . . 9 (𝑞 = 𝑃 → (¬ 𝑞 𝑊 ↔ ¬ 𝑃 𝑊))
30 id 22 . . . . . . . . . . . 12 (𝑞 = 𝑃𝑞 = 𝑃)
31 fveq2 6897 . . . . . . . . . . . 12 (𝑞 = 𝑃 → (𝐹𝑞) = (𝐹𝑃))
3230, 31oveq12d 7438 . . . . . . . . . . 11 (𝑞 = 𝑃 → (𝑞 (𝐹𝑞)) = (𝑃 (𝐹𝑃)))
3332oveq1d 7435 . . . . . . . . . 10 (𝑞 = 𝑃 → ((𝑞 (𝐹𝑞)) 𝑊) = ((𝑃 (𝐹𝑃)) 𝑊))
3433eqeq2d 2739 . . . . . . . . 9 (𝑞 = 𝑃 → (𝑥 = ((𝑞 (𝐹𝑞)) 𝑊) ↔ 𝑥 = ((𝑃 (𝐹𝑃)) 𝑊)))
3529, 34imbi12d 344 . . . . . . . 8 (𝑞 = 𝑃 → ((¬ 𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ (¬ 𝑃 𝑊𝑥 = ((𝑃 (𝐹𝑃)) 𝑊))))
3635rspcv 3605 . . . . . . 7 (𝑃𝐴 → (∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) → (¬ 𝑃 𝑊𝑥 = ((𝑃 (𝐹𝑃)) 𝑊))))
3736com23 86 . . . . . 6 (𝑃𝐴 → (¬ 𝑃 𝑊 → (∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) → 𝑥 = ((𝑃 (𝐹𝑃)) 𝑊))))
3826, 27, 37sylc 65 . . . . 5 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) → 𝑥 = ((𝑃 (𝐹𝑃)) 𝑊)))
39 simp11 1201 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → (𝐾 ∈ Lat ∧ 𝑊𝐻))
40 simp12 1202 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → 𝐹𝑇)
41 simp13l 1286 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → 𝑃𝐴)
42 simp13r 1287 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → ¬ 𝑃 𝑊)
43 simp3 1136 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → 𝑞𝐴)
44 simp2 1135 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → ¬ 𝑞 𝑊)
454, 5, 6, 7, 8, 9ltrnu 39594 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))
4639, 40, 41, 42, 43, 44, 45syl222anc 1384 . . . . . . . . . 10 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))
47 eqeq2 2740 . . . . . . . . . . 11 (((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) ↔ 𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))
4847biimpd 228 . . . . . . . . . 10 (((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → 𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))
4946, 48syl 17 . . . . . . . . 9 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → 𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))
50493exp 1117 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (¬ 𝑞 𝑊 → (𝑞𝐴 → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → 𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))))
5150com24 95 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → (𝑞𝐴 → (¬ 𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))))
5251ralrimdv 3149 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → ∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))))
5352adantr 480 . . . . 5 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → ∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))))
5438, 53impbid 211 . . . 4 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ 𝑥 = ((𝑃 (𝐹𝑃)) 𝑊)))
5525, 54riota5 7406 . . 3 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑥 ∈ (Base‘𝐾)∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))) = ((𝑃 (𝐹𝑃)) 𝑊))
5612, 55eqtrd 2768 . 2 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
572, 56syl3an1 1161 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3058   class class class wbr 5148  cfv 6548  crio 7375  (class class class)co 7420  Basecbs 17180  lecple 17240  joincjn 18303  meetcmee 18304  Latclat 18423  Atomscatm 38735  HLchlt 38822  LHypclh 39457  LTrncltrn 39574  trLctrl 39631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-map 8847  df-lub 18338  df-glb 18339  df-join 18340  df-meet 18341  df-lat 18424  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823  df-lhyp 39461  df-laut 39462  df-ldil 39577  df-ltrn 39578  df-trl 39632
This theorem is referenced by:  trlcl  39637  trlcnv  39638  trljat1  39639  trljat2  39640  trlat  39642  trl0  39643  trlle  39657  trlval3  39660  trlval5  39662  cdlemd6  39676  cdlemf  40036  cdlemg4a  40081  cdlemg4b1  40082  cdlemg4b2  40083  cdlemg4  40090  cdlemg11b  40115  cdlemg13a  40124  cdlemg13  40125  cdlemg17a  40134  cdlemg17dN  40136  cdlemg17e  40138  cdlemg17f  40139  trlcoabs2N  40195  trlcolem  40199  cdlemg42  40202  cdlemg43  40203  cdlemi1  40291  cdlemk4  40307  cdlemk39  40389  dia2dimlem1  40537  dia2dimlem2  40538  dia2dimlem3  40539  cdlemm10N  40591  cdlemn2  40668  cdlemn10  40679  dihjatcclem3  40893
  Copyright terms: Public domain W3C validator