Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlval2 Structured version   Visualization version   GIF version

Theorem trlval2 38699
Description: The value of the trace of a lattice translation, given any atom 𝑃 not under the fiducial co-atom 𝑊. Note: this requires only the weaker assumption 𝐾 ∈ Lat; we use 𝐾 ∈ HL for convenience. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
trlval2.l = (le‘𝐾)
trlval2.j = (join‘𝐾)
trlval2.m = (meet‘𝐾)
trlval2.a 𝐴 = (Atoms‘𝐾)
trlval2.h 𝐻 = (LHyp‘𝐾)
trlval2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlval2.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlval2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))

Proof of Theorem trlval2
Dummy variables 𝑥 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hllat 37898 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
21anim1i 615 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ Lat ∧ 𝑊𝐻))
3 eqid 2731 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
4 trlval2.l . . . . 5 = (le‘𝐾)
5 trlval2.j . . . . 5 = (join‘𝐾)
6 trlval2.m . . . . 5 = (meet‘𝐾)
7 trlval2.a . . . . 5 𝐴 = (Atoms‘𝐾)
8 trlval2.h . . . . 5 𝐻 = (LHyp‘𝐾)
9 trlval2.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 trlval2.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
113, 4, 5, 6, 7, 8, 9, 10trlval 38698 . . . 4 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑥 ∈ (Base‘𝐾)∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))))
12113adant3 1132 . . 3 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = (𝑥 ∈ (Base‘𝐾)∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))))
13 simp1l 1197 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
14 simp3l 1201 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
153, 7atbase 37824 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1614, 15syl 17 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 ∈ (Base‘𝐾))
173, 8, 9ltrncl 38661 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃 ∈ (Base‘𝐾)) → (𝐹𝑃) ∈ (Base‘𝐾))
1816, 17syld3an3 1409 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ (Base‘𝐾))
193, 5latjcl 18342 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹𝑃) ∈ (Base‘𝐾)) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
2013, 16, 18, 19syl3anc 1371 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
21 simp1r 1198 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
223, 8lhpbase 38534 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2321, 22syl 17 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
243, 6latmcl 18343 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃)) 𝑊) ∈ (Base‘𝐾))
2513, 20, 23, 24syl3anc 1371 . . . 4 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐹𝑃)) 𝑊) ∈ (Base‘𝐾))
26 simpl3l 1228 . . . . . 6 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑃𝐴)
27 simpl3r 1229 . . . . . 6 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → ¬ 𝑃 𝑊)
28 breq1 5113 . . . . . . . . . 10 (𝑞 = 𝑃 → (𝑞 𝑊𝑃 𝑊))
2928notbid 317 . . . . . . . . 9 (𝑞 = 𝑃 → (¬ 𝑞 𝑊 ↔ ¬ 𝑃 𝑊))
30 id 22 . . . . . . . . . . . 12 (𝑞 = 𝑃𝑞 = 𝑃)
31 fveq2 6847 . . . . . . . . . . . 12 (𝑞 = 𝑃 → (𝐹𝑞) = (𝐹𝑃))
3230, 31oveq12d 7380 . . . . . . . . . . 11 (𝑞 = 𝑃 → (𝑞 (𝐹𝑞)) = (𝑃 (𝐹𝑃)))
3332oveq1d 7377 . . . . . . . . . 10 (𝑞 = 𝑃 → ((𝑞 (𝐹𝑞)) 𝑊) = ((𝑃 (𝐹𝑃)) 𝑊))
3433eqeq2d 2742 . . . . . . . . 9 (𝑞 = 𝑃 → (𝑥 = ((𝑞 (𝐹𝑞)) 𝑊) ↔ 𝑥 = ((𝑃 (𝐹𝑃)) 𝑊)))
3529, 34imbi12d 344 . . . . . . . 8 (𝑞 = 𝑃 → ((¬ 𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ (¬ 𝑃 𝑊𝑥 = ((𝑃 (𝐹𝑃)) 𝑊))))
3635rspcv 3578 . . . . . . 7 (𝑃𝐴 → (∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) → (¬ 𝑃 𝑊𝑥 = ((𝑃 (𝐹𝑃)) 𝑊))))
3736com23 86 . . . . . 6 (𝑃𝐴 → (¬ 𝑃 𝑊 → (∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) → 𝑥 = ((𝑃 (𝐹𝑃)) 𝑊))))
3826, 27, 37sylc 65 . . . . 5 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) → 𝑥 = ((𝑃 (𝐹𝑃)) 𝑊)))
39 simp11 1203 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → (𝐾 ∈ Lat ∧ 𝑊𝐻))
40 simp12 1204 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → 𝐹𝑇)
41 simp13l 1288 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → 𝑃𝐴)
42 simp13r 1289 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → ¬ 𝑃 𝑊)
43 simp3 1138 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → 𝑞𝐴)
44 simp2 1137 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → ¬ 𝑞 𝑊)
454, 5, 6, 7, 8, 9ltrnu 38657 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))
4639, 40, 41, 42, 43, 44, 45syl222anc 1386 . . . . . . . . . 10 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))
47 eqeq2 2743 . . . . . . . . . . 11 (((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) ↔ 𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))
4847biimpd 228 . . . . . . . . . 10 (((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → 𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))
4946, 48syl 17 . . . . . . . . 9 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → 𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))
50493exp 1119 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (¬ 𝑞 𝑊 → (𝑞𝐴 → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → 𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))))
5150com24 95 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → (𝑞𝐴 → (¬ 𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))))
5251ralrimdv 3145 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → ∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))))
5352adantr 481 . . . . 5 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → ∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))))
5438, 53impbid 211 . . . 4 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ 𝑥 = ((𝑃 (𝐹𝑃)) 𝑊)))
5525, 54riota5 7348 . . 3 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑥 ∈ (Base‘𝐾)∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))) = ((𝑃 (𝐹𝑃)) 𝑊))
5612, 55eqtrd 2771 . 2 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
572, 56syl3an1 1163 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3060   class class class wbr 5110  cfv 6501  crio 7317  (class class class)co 7362  Basecbs 17094  lecple 17154  joincjn 18214  meetcmee 18215  Latclat 18334  Atomscatm 37798  HLchlt 37885  LHypclh 38520  LTrncltrn 38637  trLctrl 38694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-map 8774  df-lub 18249  df-glb 18250  df-join 18251  df-meet 18252  df-lat 18335  df-ats 37802  df-atl 37833  df-cvlat 37857  df-hlat 37886  df-lhyp 38524  df-laut 38525  df-ldil 38640  df-ltrn 38641  df-trl 38695
This theorem is referenced by:  trlcl  38700  trlcnv  38701  trljat1  38702  trljat2  38703  trlat  38705  trl0  38706  trlle  38720  trlval3  38723  trlval5  38725  cdlemd6  38739  cdlemf  39099  cdlemg4a  39144  cdlemg4b1  39145  cdlemg4b2  39146  cdlemg4  39153  cdlemg11b  39178  cdlemg13a  39187  cdlemg13  39188  cdlemg17a  39197  cdlemg17dN  39199  cdlemg17e  39201  cdlemg17f  39202  trlcoabs2N  39258  trlcolem  39262  cdlemg42  39265  cdlemg43  39266  cdlemi1  39354  cdlemk4  39370  cdlemk39  39452  dia2dimlem1  39600  dia2dimlem2  39601  dia2dimlem3  39602  cdlemm10N  39654  cdlemn2  39731  cdlemn10  39742  dihjatcclem3  39956
  Copyright terms: Public domain W3C validator