Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlval2 Structured version   Visualization version   GIF version

Theorem trlval2 37331
Description: The value of the trace of a lattice translation, given any atom 𝑃 not under the fiducial co-atom 𝑊. Note: this requires only the weaker assumption 𝐾 ∈ Lat; we use 𝐾 ∈ HL for convenience. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
trlval2.l = (le‘𝐾)
trlval2.j = (join‘𝐾)
trlval2.m = (meet‘𝐾)
trlval2.a 𝐴 = (Atoms‘𝐾)
trlval2.h 𝐻 = (LHyp‘𝐾)
trlval2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlval2.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlval2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))

Proof of Theorem trlval2
Dummy variables 𝑥 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hllat 36531 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
21anim1i 616 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ Lat ∧ 𝑊𝐻))
3 eqid 2820 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
4 trlval2.l . . . . 5 = (le‘𝐾)
5 trlval2.j . . . . 5 = (join‘𝐾)
6 trlval2.m . . . . 5 = (meet‘𝐾)
7 trlval2.a . . . . 5 𝐴 = (Atoms‘𝐾)
8 trlval2.h . . . . 5 𝐻 = (LHyp‘𝐾)
9 trlval2.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 trlval2.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
113, 4, 5, 6, 7, 8, 9, 10trlval 37330 . . . 4 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑥 ∈ (Base‘𝐾)∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))))
12113adant3 1128 . . 3 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = (𝑥 ∈ (Base‘𝐾)∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))))
13 simp1l 1193 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
14 simp3l 1197 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
153, 7atbase 36457 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1614, 15syl 17 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 ∈ (Base‘𝐾))
173, 8, 9ltrncl 37293 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃 ∈ (Base‘𝐾)) → (𝐹𝑃) ∈ (Base‘𝐾))
1816, 17syld3an3 1405 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ (Base‘𝐾))
193, 5latjcl 17636 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹𝑃) ∈ (Base‘𝐾)) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
2013, 16, 18, 19syl3anc 1367 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
21 simp1r 1194 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
223, 8lhpbase 37166 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2321, 22syl 17 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
243, 6latmcl 17637 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃)) 𝑊) ∈ (Base‘𝐾))
2513, 20, 23, 24syl3anc 1367 . . . 4 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐹𝑃)) 𝑊) ∈ (Base‘𝐾))
26 simpl3l 1224 . . . . . 6 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑃𝐴)
27 simpl3r 1225 . . . . . 6 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → ¬ 𝑃 𝑊)
28 breq1 5041 . . . . . . . . . 10 (𝑞 = 𝑃 → (𝑞 𝑊𝑃 𝑊))
2928notbid 320 . . . . . . . . 9 (𝑞 = 𝑃 → (¬ 𝑞 𝑊 ↔ ¬ 𝑃 𝑊))
30 id 22 . . . . . . . . . . . 12 (𝑞 = 𝑃𝑞 = 𝑃)
31 fveq2 6642 . . . . . . . . . . . 12 (𝑞 = 𝑃 → (𝐹𝑞) = (𝐹𝑃))
3230, 31oveq12d 7147 . . . . . . . . . . 11 (𝑞 = 𝑃 → (𝑞 (𝐹𝑞)) = (𝑃 (𝐹𝑃)))
3332oveq1d 7144 . . . . . . . . . 10 (𝑞 = 𝑃 → ((𝑞 (𝐹𝑞)) 𝑊) = ((𝑃 (𝐹𝑃)) 𝑊))
3433eqeq2d 2831 . . . . . . . . 9 (𝑞 = 𝑃 → (𝑥 = ((𝑞 (𝐹𝑞)) 𝑊) ↔ 𝑥 = ((𝑃 (𝐹𝑃)) 𝑊)))
3529, 34imbi12d 347 . . . . . . . 8 (𝑞 = 𝑃 → ((¬ 𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ (¬ 𝑃 𝑊𝑥 = ((𝑃 (𝐹𝑃)) 𝑊))))
3635rspcv 3594 . . . . . . 7 (𝑃𝐴 → (∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) → (¬ 𝑃 𝑊𝑥 = ((𝑃 (𝐹𝑃)) 𝑊))))
3736com23 86 . . . . . 6 (𝑃𝐴 → (¬ 𝑃 𝑊 → (∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) → 𝑥 = ((𝑃 (𝐹𝑃)) 𝑊))))
3826, 27, 37sylc 65 . . . . 5 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) → 𝑥 = ((𝑃 (𝐹𝑃)) 𝑊)))
39 simp11 1199 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → (𝐾 ∈ Lat ∧ 𝑊𝐻))
40 simp12 1200 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → 𝐹𝑇)
41 simp13l 1284 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → 𝑃𝐴)
42 simp13r 1285 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → ¬ 𝑃 𝑊)
43 simp3 1134 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → 𝑞𝐴)
44 simp2 1133 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → ¬ 𝑞 𝑊)
454, 5, 6, 7, 8, 9ltrnu 37289 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))
4639, 40, 41, 42, 43, 44, 45syl222anc 1382 . . . . . . . . . 10 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))
47 eqeq2 2832 . . . . . . . . . . 11 (((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) ↔ 𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))
4847biimpd 231 . . . . . . . . . 10 (((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → 𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))
4946, 48syl 17 . . . . . . . . 9 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → 𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))
50493exp 1115 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (¬ 𝑞 𝑊 → (𝑞𝐴 → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → 𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))))
5150com24 95 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → (𝑞𝐴 → (¬ 𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))))
5251ralrimdv 3175 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → ∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))))
5352adantr 483 . . . . 5 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → ∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))))
5438, 53impbid 214 . . . 4 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ 𝑥 = ((𝑃 (𝐹𝑃)) 𝑊)))
5525, 54riota5 7116 . . 3 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑥 ∈ (Base‘𝐾)∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))) = ((𝑃 (𝐹𝑃)) 𝑊))
5612, 55eqtrd 2855 . 2 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
572, 56syl3an1 1159 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3125   class class class wbr 5038  cfv 6327  crio 7086  (class class class)co 7129  Basecbs 16458  lecple 16547  joincjn 17529  meetcmee 17530  Latclat 17630  Atomscatm 36431  HLchlt 36518  LHypclh 37152  LTrncltrn 37269  trLctrl 37326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5162  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4811  df-iun 4893  df-br 5039  df-opab 5101  df-mpt 5119  df-id 5432  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7087  df-ov 7132  df-oprab 7133  df-mpo 7134  df-map 8382  df-lub 17559  df-glb 17560  df-join 17561  df-meet 17562  df-lat 17631  df-ats 36435  df-atl 36466  df-cvlat 36490  df-hlat 36519  df-lhyp 37156  df-laut 37157  df-ldil 37272  df-ltrn 37273  df-trl 37327
This theorem is referenced by:  trlcl  37332  trlcnv  37333  trljat1  37334  trljat2  37335  trlat  37337  trl0  37338  trlle  37352  trlval3  37355  trlval5  37357  cdlemd6  37371  cdlemf  37731  cdlemg4a  37776  cdlemg4b1  37777  cdlemg4b2  37778  cdlemg4  37785  cdlemg11b  37810  cdlemg13a  37819  cdlemg13  37820  cdlemg17a  37829  cdlemg17dN  37831  cdlemg17e  37833  cdlemg17f  37834  trlcoabs2N  37890  trlcolem  37894  cdlemg42  37897  cdlemg43  37898  cdlemi1  37986  cdlemk4  38002  cdlemk39  38084  dia2dimlem1  38232  dia2dimlem2  38233  dia2dimlem3  38234  cdlemm10N  38286  cdlemn2  38363  cdlemn10  38374  dihjatcclem3  38588
  Copyright terms: Public domain W3C validator