Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlval2 Structured version   Visualization version   GIF version

Theorem trlval2 40128
Description: The value of the trace of a lattice translation, given any atom 𝑃 not under the fiducial co-atom 𝑊. Note: this requires only the weaker assumption 𝐾 ∈ Lat; we use 𝐾 ∈ HL for convenience. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
trlval2.l = (le‘𝐾)
trlval2.j = (join‘𝐾)
trlval2.m = (meet‘𝐾)
trlval2.a 𝐴 = (Atoms‘𝐾)
trlval2.h 𝐻 = (LHyp‘𝐾)
trlval2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlval2.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlval2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))

Proof of Theorem trlval2
Dummy variables 𝑥 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hllat 39327 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
21anim1i 615 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ Lat ∧ 𝑊𝐻))
3 eqid 2735 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
4 trlval2.l . . . . 5 = (le‘𝐾)
5 trlval2.j . . . . 5 = (join‘𝐾)
6 trlval2.m . . . . 5 = (meet‘𝐾)
7 trlval2.a . . . . 5 𝐴 = (Atoms‘𝐾)
8 trlval2.h . . . . 5 𝐻 = (LHyp‘𝐾)
9 trlval2.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 trlval2.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
113, 4, 5, 6, 7, 8, 9, 10trlval 40127 . . . 4 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑥 ∈ (Base‘𝐾)∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))))
12113adant3 1132 . . 3 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = (𝑥 ∈ (Base‘𝐾)∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))))
13 simp1l 1198 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
14 simp3l 1202 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
153, 7atbase 39253 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1614, 15syl 17 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 ∈ (Base‘𝐾))
173, 8, 9ltrncl 40090 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃 ∈ (Base‘𝐾)) → (𝐹𝑃) ∈ (Base‘𝐾))
1816, 17syld3an3 1411 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ (Base‘𝐾))
193, 5latjcl 18447 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹𝑃) ∈ (Base‘𝐾)) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
2013, 16, 18, 19syl3anc 1373 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
21 simp1r 1199 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
223, 8lhpbase 39963 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2321, 22syl 17 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
243, 6latmcl 18448 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃)) 𝑊) ∈ (Base‘𝐾))
2513, 20, 23, 24syl3anc 1373 . . . 4 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐹𝑃)) 𝑊) ∈ (Base‘𝐾))
26 simpl3l 1229 . . . . . 6 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑃𝐴)
27 simpl3r 1230 . . . . . 6 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → ¬ 𝑃 𝑊)
28 breq1 5122 . . . . . . . . . 10 (𝑞 = 𝑃 → (𝑞 𝑊𝑃 𝑊))
2928notbid 318 . . . . . . . . 9 (𝑞 = 𝑃 → (¬ 𝑞 𝑊 ↔ ¬ 𝑃 𝑊))
30 id 22 . . . . . . . . . . . 12 (𝑞 = 𝑃𝑞 = 𝑃)
31 fveq2 6875 . . . . . . . . . . . 12 (𝑞 = 𝑃 → (𝐹𝑞) = (𝐹𝑃))
3230, 31oveq12d 7421 . . . . . . . . . . 11 (𝑞 = 𝑃 → (𝑞 (𝐹𝑞)) = (𝑃 (𝐹𝑃)))
3332oveq1d 7418 . . . . . . . . . 10 (𝑞 = 𝑃 → ((𝑞 (𝐹𝑞)) 𝑊) = ((𝑃 (𝐹𝑃)) 𝑊))
3433eqeq2d 2746 . . . . . . . . 9 (𝑞 = 𝑃 → (𝑥 = ((𝑞 (𝐹𝑞)) 𝑊) ↔ 𝑥 = ((𝑃 (𝐹𝑃)) 𝑊)))
3529, 34imbi12d 344 . . . . . . . 8 (𝑞 = 𝑃 → ((¬ 𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ (¬ 𝑃 𝑊𝑥 = ((𝑃 (𝐹𝑃)) 𝑊))))
3635rspcv 3597 . . . . . . 7 (𝑃𝐴 → (∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) → (¬ 𝑃 𝑊𝑥 = ((𝑃 (𝐹𝑃)) 𝑊))))
3736com23 86 . . . . . 6 (𝑃𝐴 → (¬ 𝑃 𝑊 → (∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) → 𝑥 = ((𝑃 (𝐹𝑃)) 𝑊))))
3826, 27, 37sylc 65 . . . . 5 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) → 𝑥 = ((𝑃 (𝐹𝑃)) 𝑊)))
39 simp11 1204 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → (𝐾 ∈ Lat ∧ 𝑊𝐻))
40 simp12 1205 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → 𝐹𝑇)
41 simp13l 1289 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → 𝑃𝐴)
42 simp13r 1290 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → ¬ 𝑃 𝑊)
43 simp3 1138 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → 𝑞𝐴)
44 simp2 1137 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → ¬ 𝑞 𝑊)
454, 5, 6, 7, 8, 9ltrnu 40086 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))
4639, 40, 41, 42, 43, 44, 45syl222anc 1388 . . . . . . . . . 10 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))
47 eqeq2 2747 . . . . . . . . . . 11 (((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) ↔ 𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))
4847biimpd 229 . . . . . . . . . 10 (((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → 𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))
4946, 48syl 17 . . . . . . . . 9 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ¬ 𝑞 𝑊𝑞𝐴) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → 𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))
50493exp 1119 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (¬ 𝑞 𝑊 → (𝑞𝐴 → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → 𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))))
5150com24 95 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → (𝑞𝐴 → (¬ 𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)))))
5251ralrimdv 3138 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → ∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))))
5352adantr 480 . . . . 5 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = ((𝑃 (𝐹𝑃)) 𝑊) → ∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))))
5438, 53impbid 212 . . . 4 ((((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ 𝑥 = ((𝑃 (𝐹𝑃)) 𝑊)))
5525, 54riota5 7389 . . 3 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑥 ∈ (Base‘𝐾)∀𝑞𝐴𝑞 𝑊𝑥 = ((𝑞 (𝐹𝑞)) 𝑊))) = ((𝑃 (𝐹𝑃)) 𝑊))
5612, 55eqtrd 2770 . 2 (((𝐾 ∈ Lat ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
572, 56syl3an1 1163 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051   class class class wbr 5119  cfv 6530  crio 7359  (class class class)co 7403  Basecbs 17226  lecple 17276  joincjn 18321  meetcmee 18322  Latclat 18439  Atomscatm 39227  HLchlt 39314  LHypclh 39949  LTrncltrn 40066  trLctrl 40123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-map 8840  df-lub 18354  df-glb 18355  df-join 18356  df-meet 18357  df-lat 18440  df-ats 39231  df-atl 39262  df-cvlat 39286  df-hlat 39315  df-lhyp 39953  df-laut 39954  df-ldil 40069  df-ltrn 40070  df-trl 40124
This theorem is referenced by:  trlcl  40129  trlcnv  40130  trljat1  40131  trljat2  40132  trlat  40134  trl0  40135  trlle  40149  trlval3  40152  trlval5  40154  cdlemd6  40168  cdlemf  40528  cdlemg4a  40573  cdlemg4b1  40574  cdlemg4b2  40575  cdlemg4  40582  cdlemg11b  40607  cdlemg13a  40616  cdlemg13  40617  cdlemg17a  40626  cdlemg17dN  40628  cdlemg17e  40630  cdlemg17f  40631  trlcoabs2N  40687  trlcolem  40691  cdlemg42  40694  cdlemg43  40695  cdlemi1  40783  cdlemk4  40799  cdlemk39  40881  dia2dimlem1  41029  dia2dimlem2  41030  dia2dimlem3  41031  cdlemm10N  41083  cdlemn2  41160  cdlemn10  41171  dihjatcclem3  41385
  Copyright terms: Public domain W3C validator