Step | Hyp | Ref
| Expression |
1 | | hllat 37373 |
. . 3
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
2 | 1 | anim1i 615 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻)) |
3 | | eqid 2740 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
4 | | trlval2.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
5 | | trlval2.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
6 | | trlval2.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
7 | | trlval2.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
8 | | trlval2.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
9 | | trlval2.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
10 | | trlval2.r |
. . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
11 | 3, 4, 5, 6, 7, 8, 9, 10 | trlval 38172 |
. . . 4
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = (℩𝑥 ∈ (Base‘𝐾)∀𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) |
12 | 11 | 3adant3 1131 |
. . 3
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐹) = (℩𝑥 ∈ (Base‘𝐾)∀𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) |
13 | | simp1l 1196 |
. . . . 5
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ Lat) |
14 | | simp3l 1200 |
. . . . . . 7
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) |
15 | 3, 7 | atbase 37299 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
16 | 14, 15 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ (Base‘𝐾)) |
17 | 3, 8, 9 | ltrncl 38135 |
. . . . . . 7
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ (Base‘𝐾)) → (𝐹‘𝑃) ∈ (Base‘𝐾)) |
18 | 16, 17 | syld3an3 1408 |
. . . . . 6
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘𝑃) ∈ (Base‘𝐾)) |
19 | 3, 5 | latjcl 18155 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹‘𝑃) ∈ (Base‘𝐾)) → (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾)) |
20 | 13, 16, 18, 19 | syl3anc 1370 |
. . . . 5
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾)) |
21 | | simp1r 1197 |
. . . . . 6
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ 𝐻) |
22 | 3, 8 | lhpbase 38008 |
. . . . . 6
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
23 | 21, 22 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
24 | 3, 6 | latmcl 18156 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) ∈ (Base‘𝐾)) |
25 | 13, 20, 23, 24 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) ∈ (Base‘𝐾)) |
26 | | simpl3l 1227 |
. . . . . 6
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑃 ∈ 𝐴) |
27 | | simpl3r 1228 |
. . . . . 6
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → ¬ 𝑃 ≤ 𝑊) |
28 | | breq1 5082 |
. . . . . . . . . 10
⊢ (𝑞 = 𝑃 → (𝑞 ≤ 𝑊 ↔ 𝑃 ≤ 𝑊)) |
29 | 28 | notbid 318 |
. . . . . . . . 9
⊢ (𝑞 = 𝑃 → (¬ 𝑞 ≤ 𝑊 ↔ ¬ 𝑃 ≤ 𝑊)) |
30 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑃 → 𝑞 = 𝑃) |
31 | | fveq2 6771 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑃 → (𝐹‘𝑞) = (𝐹‘𝑃)) |
32 | 30, 31 | oveq12d 7289 |
. . . . . . . . . . 11
⊢ (𝑞 = 𝑃 → (𝑞 ∨ (𝐹‘𝑞)) = (𝑃 ∨ (𝐹‘𝑃))) |
33 | 32 | oveq1d 7286 |
. . . . . . . . . 10
⊢ (𝑞 = 𝑃 → ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊) = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊)) |
34 | 33 | eqeq2d 2751 |
. . . . . . . . 9
⊢ (𝑞 = 𝑃 → (𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊) ↔ 𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊))) |
35 | 29, 34 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑞 = 𝑃 → ((¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) ↔ (¬ 𝑃 ≤ 𝑊 → 𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊)))) |
36 | 35 | rspcv 3556 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → (∀𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) → (¬ 𝑃 ≤ 𝑊 → 𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊)))) |
37 | 36 | com23 86 |
. . . . . 6
⊢ (𝑃 ∈ 𝐴 → (¬ 𝑃 ≤ 𝑊 → (∀𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) → 𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊)))) |
38 | 26, 27, 37 | sylc 65 |
. . . . 5
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) → 𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊))) |
39 | | simp11 1202 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴) → (𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻)) |
40 | | simp12 1203 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴) → 𝐹 ∈ 𝑇) |
41 | | simp13l 1287 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴) → 𝑃 ∈ 𝐴) |
42 | | simp13r 1288 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴) → ¬ 𝑃 ≤ 𝑊) |
43 | | simp3 1137 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴) |
44 | | simp2 1136 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴) → ¬ 𝑞 ≤ 𝑊) |
45 | 4, 5, 6, 7, 8, 9 | ltrnu 38131 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) |
46 | 39, 40, 41, 42, 43, 44, 45 | syl222anc 1385 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) |
47 | | eqeq2 2752 |
. . . . . . . . . . 11
⊢ (((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊) → (𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) ↔ 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) |
48 | 47 | biimpd 228 |
. . . . . . . . . 10
⊢ (((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊) → (𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) |
49 | 46, 48 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴) → (𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) |
50 | 49 | 3exp 1118 |
. . . . . . . 8
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (¬ 𝑞 ≤ 𝑊 → (𝑞 ∈ 𝐴 → (𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))))) |
51 | 50 | com24 95 |
. . . . . . 7
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) → (𝑞 ∈ 𝐴 → (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))))) |
52 | 51 | ralrimdv 3114 |
. . . . . 6
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) → ∀𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) |
53 | 52 | adantr 481 |
. . . . 5
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) → ∀𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) |
54 | 38, 53 | impbid 211 |
. . . 4
⊢ ((((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) ↔ 𝑥 = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊))) |
55 | 25, 54 | riota5 7258 |
. . 3
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (℩𝑥 ∈ (Base‘𝐾)∀𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 → 𝑥 = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊)) |
56 | 12, 55 | eqtrd 2780 |
. 2
⊢ (((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊)) |
57 | 2, 56 | syl3an1 1162 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊)) |