Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleml4N | Structured version Visualization version GIF version |
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdleml1.b | ⊢ 𝐵 = (Base‘𝐾) |
cdleml1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleml1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdleml1.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdleml1.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
cdleml3.o | ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
cdleml4N | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝑈 ≠ 0 ∧ 𝑉 ≠ 0 )) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleml1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdleml1.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | cdleml1.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | cdlemftr0 38345 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ 𝑇 𝑓 ≠ ( I ↾ 𝐵)) |
5 | 4 | 3ad2ant1 1135 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝑈 ≠ 0 ∧ 𝑉 ≠ 0 )) → ∃𝑓 ∈ 𝑇 𝑓 ≠ ( I ↾ 𝐵)) |
6 | simp11 1205 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝑈 ≠ 0 ∧ 𝑉 ≠ 0 )) ∧ 𝑓 ∈ 𝑇 ∧ 𝑓 ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | simp12l 1288 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝑈 ≠ 0 ∧ 𝑉 ≠ 0 )) ∧ 𝑓 ∈ 𝑇 ∧ 𝑓 ≠ ( I ↾ 𝐵)) → 𝑈 ∈ 𝐸) | |
8 | simp12r 1289 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝑈 ≠ 0 ∧ 𝑉 ≠ 0 )) ∧ 𝑓 ∈ 𝑇 ∧ 𝑓 ≠ ( I ↾ 𝐵)) → 𝑉 ∈ 𝐸) | |
9 | simp2 1139 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝑈 ≠ 0 ∧ 𝑉 ≠ 0 )) ∧ 𝑓 ∈ 𝑇 ∧ 𝑓 ≠ ( I ↾ 𝐵)) → 𝑓 ∈ 𝑇) | |
10 | simp3 1140 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝑈 ≠ 0 ∧ 𝑉 ≠ 0 )) ∧ 𝑓 ∈ 𝑇 ∧ 𝑓 ≠ ( I ↾ 𝐵)) → 𝑓 ≠ ( I ↾ 𝐵)) | |
11 | simp13l 1290 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝑈 ≠ 0 ∧ 𝑉 ≠ 0 )) ∧ 𝑓 ∈ 𝑇 ∧ 𝑓 ≠ ( I ↾ 𝐵)) → 𝑈 ≠ 0 ) | |
12 | simp13r 1291 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝑈 ≠ 0 ∧ 𝑉 ≠ 0 )) ∧ 𝑓 ∈ 𝑇 ∧ 𝑓 ≠ ( I ↾ 𝐵)) → 𝑉 ≠ 0 ) | |
13 | cdleml1.r | . . . . 5 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
14 | cdleml1.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
15 | cdleml3.o | . . . . 5 ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
16 | 1, 2, 3, 13, 14, 15 | cdleml3N 38755 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈 ≠ 0 ∧ 𝑉 ≠ 0 )) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
17 | 6, 7, 8, 9, 10, 11, 12, 16 | syl133anc 1395 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝑈 ≠ 0 ∧ 𝑉 ≠ 0 )) ∧ 𝑓 ∈ 𝑇 ∧ 𝑓 ≠ ( I ↾ 𝐵)) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
18 | 17 | rexlimdv3a 3213 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝑈 ≠ 0 ∧ 𝑉 ≠ 0 )) → (∃𝑓 ∈ 𝑇 𝑓 ≠ ( I ↾ 𝐵) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉)) |
19 | 5, 18 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝑈 ≠ 0 ∧ 𝑉 ≠ 0 )) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 ∃wrex 3063 ↦ cmpt 5149 I cid 5468 ↾ cres 5567 ∘ ccom 5569 ‘cfv 6397 Basecbs 16784 HLchlt 37127 LHypclh 37761 LTrncltrn 37878 trLctrl 37935 TEndoctendo 38529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-riotaBAD 36730 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-op 4562 df-uni 4834 df-iun 4920 df-iin 4921 df-br 5068 df-opab 5130 df-mpt 5150 df-id 5469 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-1st 7779 df-2nd 7780 df-undef 8035 df-map 8530 df-proset 17826 df-poset 17844 df-plt 17860 df-lub 17876 df-glb 17877 df-join 17878 df-meet 17879 df-p0 17955 df-p1 17956 df-lat 17962 df-clat 18029 df-oposet 36953 df-ol 36955 df-oml 36956 df-covers 37043 df-ats 37044 df-atl 37075 df-cvlat 37099 df-hlat 37128 df-llines 37275 df-lplanes 37276 df-lvols 37277 df-lines 37278 df-psubsp 37280 df-pmap 37281 df-padd 37573 df-lhyp 37765 df-laut 37766 df-ldil 37881 df-ltrn 37882 df-trl 37936 df-tendo 38532 |
This theorem is referenced by: cdleml5N 38757 |
Copyright terms: Public domain | W3C validator |