Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml4N Structured version   Visualization version   GIF version

Theorem cdleml4N 37000
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b 𝐵 = (Base‘𝐾)
cdleml1.h 𝐻 = (LHyp‘𝐾)
cdleml1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdleml1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdleml1.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdleml3.o 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
cdleml4N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
Distinct variable groups:   𝐸,𝑠   𝐾,𝑠   𝑅,𝑠   𝑇,𝑠   𝑈,𝑠   𝑉,𝑠   𝑊,𝑠,𝑔   𝐵,𝑔,𝑠   𝑔,𝐻,𝑠   𝑔,𝐾   0 ,𝑠   𝑇,𝑔   𝑔,𝑊
Allowed substitution hints:   𝑅(𝑔)   𝑈(𝑔)   𝐸(𝑔)   𝑉(𝑔)   0 (𝑔)

Proof of Theorem cdleml4N
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cdleml1.b . . . 4 𝐵 = (Base‘𝐾)
2 cdleml1.h . . . 4 𝐻 = (LHyp‘𝐾)
3 cdleml1.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
41, 2, 3cdlemftr0 36589 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 𝑓 ≠ ( I ↾ 𝐵))
543ad2ant1 1164 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) → ∃𝑓𝑇 𝑓 ≠ ( I ↾ 𝐵))
6 simp11 1261 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) ∧ 𝑓𝑇𝑓 ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simp12l 1386 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) ∧ 𝑓𝑇𝑓 ≠ ( I ↾ 𝐵)) → 𝑈𝐸)
8 simp12r 1387 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) ∧ 𝑓𝑇𝑓 ≠ ( I ↾ 𝐵)) → 𝑉𝐸)
9 simp2 1168 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) ∧ 𝑓𝑇𝑓 ≠ ( I ↾ 𝐵)) → 𝑓𝑇)
10 simp3 1169 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) ∧ 𝑓𝑇𝑓 ≠ ( I ↾ 𝐵)) → 𝑓 ≠ ( I ↾ 𝐵))
11 simp13l 1388 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) ∧ 𝑓𝑇𝑓 ≠ ( I ↾ 𝐵)) → 𝑈0 )
12 simp13r 1389 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) ∧ 𝑓𝑇𝑓 ≠ ( I ↾ 𝐵)) → 𝑉0 )
13 cdleml1.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
14 cdleml1.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
15 cdleml3.o . . . . 5 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
161, 2, 3, 13, 14, 15cdleml3N 36999 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
176, 7, 8, 9, 10, 11, 12, 16syl133anc 1513 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) ∧ 𝑓𝑇𝑓 ≠ ( I ↾ 𝐵)) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
1817rexlimdv3a 3214 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) → (∃𝑓𝑇 𝑓 ≠ ( I ↾ 𝐵) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉))
195, 18mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2971  wrex 3090  cmpt 4922   I cid 5219  cres 5314  ccom 5316  cfv 6101  Basecbs 16184  HLchlt 35371  LHypclh 36005  LTrncltrn 36122  trLctrl 36179  TEndoctendo 36773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-riotaBAD 34974
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-1st 7401  df-2nd 7402  df-undef 7637  df-map 8097  df-proset 17243  df-poset 17261  df-plt 17273  df-lub 17289  df-glb 17290  df-join 17291  df-meet 17292  df-p0 17354  df-p1 17355  df-lat 17361  df-clat 17423  df-oposet 35197  df-ol 35199  df-oml 35200  df-covers 35287  df-ats 35288  df-atl 35319  df-cvlat 35343  df-hlat 35372  df-llines 35519  df-lplanes 35520  df-lvols 35521  df-lines 35522  df-psubsp 35524  df-pmap 35525  df-padd 35817  df-lhyp 36009  df-laut 36010  df-ldil 36125  df-ltrn 36126  df-trl 36180  df-tendo 36776
This theorem is referenced by:  cdleml5N  37001
  Copyright terms: Public domain W3C validator