Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml4N Structured version   Visualization version   GIF version

Theorem cdleml4N 40978
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b 𝐵 = (Base‘𝐾)
cdleml1.h 𝐻 = (LHyp‘𝐾)
cdleml1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdleml1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdleml1.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdleml3.o 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
cdleml4N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
Distinct variable groups:   𝐸,𝑠   𝐾,𝑠   𝑅,𝑠   𝑇,𝑠   𝑈,𝑠   𝑉,𝑠   𝑊,𝑠,𝑔   𝐵,𝑔,𝑠   𝑔,𝐻,𝑠   𝑔,𝐾   0 ,𝑠   𝑇,𝑔   𝑔,𝑊
Allowed substitution hints:   𝑅(𝑔)   𝑈(𝑔)   𝐸(𝑔)   𝑉(𝑔)   0 (𝑔)

Proof of Theorem cdleml4N
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cdleml1.b . . . 4 𝐵 = (Base‘𝐾)
2 cdleml1.h . . . 4 𝐻 = (LHyp‘𝐾)
3 cdleml1.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
41, 2, 3cdlemftr0 40567 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 𝑓 ≠ ( I ↾ 𝐵))
543ad2ant1 1133 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) → ∃𝑓𝑇 𝑓 ≠ ( I ↾ 𝐵))
6 simp11 1204 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) ∧ 𝑓𝑇𝑓 ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simp12l 1287 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) ∧ 𝑓𝑇𝑓 ≠ ( I ↾ 𝐵)) → 𝑈𝐸)
8 simp12r 1288 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) ∧ 𝑓𝑇𝑓 ≠ ( I ↾ 𝐵)) → 𝑉𝐸)
9 simp2 1137 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) ∧ 𝑓𝑇𝑓 ≠ ( I ↾ 𝐵)) → 𝑓𝑇)
10 simp3 1138 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) ∧ 𝑓𝑇𝑓 ≠ ( I ↾ 𝐵)) → 𝑓 ≠ ( I ↾ 𝐵))
11 simp13l 1289 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) ∧ 𝑓𝑇𝑓 ≠ ( I ↾ 𝐵)) → 𝑈0 )
12 simp13r 1290 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) ∧ 𝑓𝑇𝑓 ≠ ( I ↾ 𝐵)) → 𝑉0 )
13 cdleml1.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
14 cdleml1.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
15 cdleml3.o . . . . 5 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
161, 2, 3, 13, 14, 15cdleml3N 40977 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
176, 7, 8, 9, 10, 11, 12, 16syl133anc 1395 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) ∧ 𝑓𝑇𝑓 ≠ ( I ↾ 𝐵)) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
1817rexlimdv3a 3134 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) → (∃𝑓𝑇 𝑓 ≠ ( I ↾ 𝐵) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉))
195, 18mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cmpt 5176   I cid 5517  cres 5625  ccom 5627  cfv 6486  Basecbs 17139  HLchlt 39348  LHypclh 39983  LTrncltrn 40100  trLctrl 40157  TEndoctendo 40751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-riotaBAD 38951
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-undef 8213  df-map 8762  df-proset 18219  df-poset 18238  df-plt 18253  df-lub 18269  df-glb 18270  df-join 18271  df-meet 18272  df-p0 18348  df-p1 18349  df-lat 18357  df-clat 18424  df-oposet 39174  df-ol 39176  df-oml 39177  df-covers 39264  df-ats 39265  df-atl 39296  df-cvlat 39320  df-hlat 39349  df-llines 39497  df-lplanes 39498  df-lvols 39499  df-lines 39500  df-psubsp 39502  df-pmap 39503  df-padd 39795  df-lhyp 39987  df-laut 39988  df-ldil 40103  df-ltrn 40104  df-trl 40158  df-tendo 40754
This theorem is referenced by:  cdleml5N  40979
  Copyright terms: Public domain W3C validator