Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk52 Structured version   Visualization version   GIF version

Theorem cdlemk52 41001
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 6, p. 120. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. (Contributed by NM, 23-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
Assertion
Ref Expression
cdlemk52 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) = ((𝐺𝐼) / 𝑔𝑋𝑃))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ,𝑏,𝑧   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝐺,𝑏   𝐼,𝑏,𝑔,𝑧
Allowed substitution hints:   𝑋(𝑧,𝑔,𝑏)   𝑌(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk52
StepHypRef Expression
1 cdlemk5.b . . . 4 𝐵 = (Base‘𝐾)
2 cdlemk5.l . . . 4 = (le‘𝐾)
3 simp11l 1285 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → 𝐾 ∈ HL)
43hllatd 39411 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → 𝐾 ∈ Lat)
5 simp11 1204 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simp12 1205 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)))
7 simp13 1206 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)))
8 simp21 1207 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → 𝑁𝑇)
9 simp22 1208 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
10 simp23 1209 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝑅𝐹) = (𝑅𝑁))
11 cdlemk5.j . . . . . . . . 9 = (join‘𝐾)
12 cdlemk5.m . . . . . . . . 9 = (meet‘𝐾)
13 cdlemk5.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
14 cdlemk5.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
15 cdlemk5.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
16 cdlemk5.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
17 cdlemk5.z . . . . . . . . 9 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
18 cdlemk5.y . . . . . . . . 9 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
19 cdlemk5.x . . . . . . . . 9 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
201, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemk35s 40984 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐺 / 𝑔𝑋𝑇)
215, 6, 7, 8, 9, 10, 20syl132anc 1390 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → 𝐺 / 𝑔𝑋𝑇)
22 simp31 1210 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → 𝐼𝑇)
23 simp32 1211 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → 𝐼 ≠ ( I ↾ 𝐵))
2422, 23jca 511 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵)))
251, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemk35s 40984 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐼 / 𝑔𝑋𝑇)
265, 6, 24, 8, 9, 10, 25syl132anc 1390 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → 𝐼 / 𝑔𝑋𝑇)
2714, 15ltrnco 40766 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺 / 𝑔𝑋𝑇𝐼 / 𝑔𝑋𝑇) → (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∈ 𝑇)
285, 21, 26, 27syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∈ 𝑇)
29 simp22l 1293 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → 𝑃𝐴)
302, 13, 14, 15ltrnat 40187 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∈ 𝑇𝑃𝐴) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ∈ 𝐴)
315, 28, 29, 30syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ∈ 𝐴)
321, 13atbase 39336 . . . . 5 (((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ∈ 𝐴 → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ∈ 𝐵)
3331, 32syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ∈ 𝐵)
342, 13, 14, 15ltrnat 40187 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺 / 𝑔𝑋𝑇𝑃𝐴) → (𝐺 / 𝑔𝑋𝑃) ∈ 𝐴)
355, 21, 29, 34syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝐺 / 𝑔𝑋𝑃) ∈ 𝐴)
361, 13atbase 39336 . . . . . . 7 ((𝐺 / 𝑔𝑋𝑃) ∈ 𝐴 → (𝐺 / 𝑔𝑋𝑃) ∈ 𝐵)
3735, 36syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝐺 / 𝑔𝑋𝑃) ∈ 𝐵)
381, 14, 15, 16trlcl 40211 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐼 / 𝑔𝑋𝑇) → (𝑅𝐼 / 𝑔𝑋) ∈ 𝐵)
395, 26, 38syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝑅𝐼 / 𝑔𝑋) ∈ 𝐵)
401, 11latjcl 18345 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐺 / 𝑔𝑋𝑃) ∈ 𝐵 ∧ (𝑅𝐼 / 𝑔𝑋) ∈ 𝐵) → ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ∈ 𝐵)
414, 37, 39, 40syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ∈ 𝐵)
422, 13, 14, 15ltrnat 40187 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐼 / 𝑔𝑋𝑇𝑃𝐴) → (𝐼 / 𝑔𝑋𝑃) ∈ 𝐴)
435, 26, 29, 42syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝐼 / 𝑔𝑋𝑃) ∈ 𝐴)
441, 13atbase 39336 . . . . . . 7 ((𝐼 / 𝑔𝑋𝑃) ∈ 𝐴 → (𝐼 / 𝑔𝑋𝑃) ∈ 𝐵)
4543, 44syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝐼 / 𝑔𝑋𝑃) ∈ 𝐵)
461, 14, 15, 16trlcl 40211 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺 / 𝑔𝑋𝑇) → (𝑅𝐺 / 𝑔𝑋) ∈ 𝐵)
475, 21, 46syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝑅𝐺 / 𝑔𝑋) ∈ 𝐵)
481, 11latjcl 18345 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐼 / 𝑔𝑋𝑃) ∈ 𝐵 ∧ (𝑅𝐺 / 𝑔𝑋) ∈ 𝐵) → ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋)) ∈ 𝐵)
494, 45, 47, 48syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋)) ∈ 𝐵)
501, 12latmcl 18346 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ∈ 𝐵 ∧ ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋)) ∈ 𝐵) → (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋))) ∈ 𝐵)
514, 41, 49, 50syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋))) ∈ 𝐵)
52 simp11r 1286 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → 𝑊𝐻)
531, 13, 14, 15, 16trlnidat 40220 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵)) → (𝑅𝐼) ∈ 𝐴)
543, 52, 22, 23, 53syl211anc 1378 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝑅𝐼) ∈ 𝐴)
551, 11, 13hlatjcl 39414 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐺 / 𝑔𝑋𝑃) ∈ 𝐴 ∧ (𝑅𝐼) ∈ 𝐴) → ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ∈ 𝐵)
563, 35, 54, 55syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ∈ 𝐵)
57 simp13l 1289 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → 𝐺𝑇)
58 simp13r 1290 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → 𝐺 ≠ ( I ↾ 𝐵))
591, 13, 14, 15, 16trlnidat 40220 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) → (𝑅𝐺) ∈ 𝐴)
603, 52, 57, 58, 59syl211anc 1378 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝑅𝐺) ∈ 𝐴)
611, 11, 13hlatjcl 39414 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐼 / 𝑔𝑋𝑃) ∈ 𝐴 ∧ (𝑅𝐺) ∈ 𝐴) → ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺)) ∈ 𝐵)
623, 43, 60, 61syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺)) ∈ 𝐵)
631, 12latmcl 18346 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ∈ 𝐵 ∧ ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺)) ∈ 𝐵) → (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺))) ∈ 𝐵)
644, 56, 62, 63syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺))) ∈ 𝐵)
651, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemk50 40999 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋))))
6624, 65syld3an3 1411 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋))))
671, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemk51 41000 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋))) (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺))))
6824, 67syld3an3 1411 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋))) (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺))))
691, 2, 4, 33, 51, 64, 66, 68lattrd 18352 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺))))
701, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemk47 40996 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → ((𝐺𝐼) / 𝑔𝑋𝑃) = (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺))))
7169, 70breqtrrd 5117 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ((𝐺𝐼) / 𝑔𝑋𝑃))
72 hlatl 39407 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
733, 72syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → 𝐾 ∈ AtLat)
7414, 15ltrnco 40766 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐼𝑇) → (𝐺𝐼) ∈ 𝑇)
755, 57, 22, 74syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝐺𝐼) ∈ 𝑇)
7657, 22jca 511 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝐺𝑇𝐼𝑇))
77 simp33 1212 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝑅𝐺) ≠ (𝑅𝐼))
781, 14, 15, 16trlconid 40772 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐼𝑇) ∧ (𝑅𝐺) ≠ (𝑅𝐼)) → (𝐺𝐼) ≠ ( I ↾ 𝐵))
795, 76, 77, 78syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝐺𝐼) ≠ ( I ↾ 𝐵))
8075, 79jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → ((𝐺𝐼) ∈ 𝑇 ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵)))
811, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemk35s 40984 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ ((𝐺𝐼) ∈ 𝑇 ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝐺𝐼) / 𝑔𝑋𝑇)
825, 6, 80, 8, 9, 10, 81syl132anc 1390 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝐺𝐼) / 𝑔𝑋𝑇)
832, 13, 14, 15ltrnat 40187 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐼) / 𝑔𝑋𝑇𝑃𝐴) → ((𝐺𝐼) / 𝑔𝑋𝑃) ∈ 𝐴)
845, 82, 29, 83syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → ((𝐺𝐼) / 𝑔𝑋𝑃) ∈ 𝐴)
852, 13atcmp 39358 . . 3 ((𝐾 ∈ AtLat ∧ ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ∈ 𝐴 ∧ ((𝐺𝐼) / 𝑔𝑋𝑃) ∈ 𝐴) → (((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ((𝐺𝐼) / 𝑔𝑋𝑃) ↔ ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) = ((𝐺𝐼) / 𝑔𝑋𝑃)))
8673, 31, 84, 85syl3anc 1373 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ((𝐺𝐼) / 𝑔𝑋𝑃) ↔ ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) = ((𝐺𝐼) / 𝑔𝑋𝑃)))
8771, 86mpbid 232 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) = ((𝐺𝐼) / 𝑔𝑋𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  csb 3845   class class class wbr 5089   I cid 5508  ccnv 5613  cres 5616  ccom 5618  cfv 6481  crio 7302  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337  Atomscatm 39310  AtLatcal 39311  HLchlt 39397  LHypclh 40031  LTrncltrn 40148  trLctrl 40205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-riotaBAD 39000
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39223  df-ol 39225  df-oml 39226  df-covers 39313  df-ats 39314  df-atl 39345  df-cvlat 39369  df-hlat 39398  df-llines 39545  df-lplanes 39546  df-lvols 39547  df-lines 39548  df-psubsp 39550  df-pmap 39551  df-padd 39843  df-lhyp 40035  df-laut 40036  df-ldil 40151  df-ltrn 40152  df-trl 40206
This theorem is referenced by:  cdlemk53a  41002
  Copyright terms: Public domain W3C validator