Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk52 Structured version   Visualization version   GIF version

Theorem cdlemk52 40337
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 6, p. 120. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. (Contributed by NM, 23-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐡 = (Baseβ€˜πΎ)
cdlemk5.l ≀ = (leβ€˜πΎ)
cdlemk5.j ∨ = (joinβ€˜πΎ)
cdlemk5.m ∧ = (meetβ€˜πΎ)
cdlemk5.a 𝐴 = (Atomsβ€˜πΎ)
cdlemk5.h 𝐻 = (LHypβ€˜πΎ)
cdlemk5.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemk5.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemk5.z 𝑍 = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))))
cdlemk5.y π‘Œ = ((𝑃 ∨ (π‘…β€˜π‘”)) ∧ (𝑍 ∨ (π‘…β€˜(𝑔 ∘ ◑𝑏))))
cdlemk5.x 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ))
Assertion
Ref Expression
cdlemk52 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ((⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹)β€˜π‘ƒ) = (⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹β€˜π‘ƒ))
Distinct variable groups:   ∧ ,𝑔   ∨ ,𝑔   𝐡,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ∧ ,𝑏,𝑧   ≀ ,𝑏   𝑧,𝑔, ≀   ∨ ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐡,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   π‘Š,𝑏,𝑔,𝑧   𝑧,π‘Œ   𝐺,𝑏   𝐼,𝑏,𝑔,𝑧
Allowed substitution hints:   𝑋(𝑧,𝑔,𝑏)   π‘Œ(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk52
StepHypRef Expression
1 cdlemk5.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 cdlemk5.l . . . 4 ≀ = (leβ€˜πΎ)
3 simp11l 1281 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ 𝐾 ∈ HL)
43hllatd 38746 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ 𝐾 ∈ Lat)
5 simp11 1200 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
6 simp12 1201 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)))
7 simp13 1202 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)))
8 simp21 1203 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ 𝑁 ∈ 𝑇)
9 simp22 1204 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
10 simp23 1205 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (π‘…β€˜πΉ) = (π‘…β€˜π‘))
11 cdlemk5.j . . . . . . . . 9 ∨ = (joinβ€˜πΎ)
12 cdlemk5.m . . . . . . . . 9 ∧ = (meetβ€˜πΎ)
13 cdlemk5.a . . . . . . . . 9 𝐴 = (Atomsβ€˜πΎ)
14 cdlemk5.h . . . . . . . . 9 𝐻 = (LHypβ€˜πΎ)
15 cdlemk5.t . . . . . . . . 9 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
16 cdlemk5.r . . . . . . . . 9 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
17 cdlemk5.z . . . . . . . . 9 𝑍 = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))))
18 cdlemk5.y . . . . . . . . 9 π‘Œ = ((𝑃 ∨ (π‘…β€˜π‘”)) ∧ (𝑍 ∨ (π‘…β€˜(𝑔 ∘ ◑𝑏))))
19 cdlemk5.x . . . . . . . . 9 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ))
201, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemk35s 40320 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) β†’ ⦋𝐺 / π‘”β¦Œπ‘‹ ∈ 𝑇)
215, 6, 7, 8, 9, 10, 20syl132anc 1385 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ⦋𝐺 / π‘”β¦Œπ‘‹ ∈ 𝑇)
22 simp31 1206 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ 𝐼 ∈ 𝑇)
23 simp32 1207 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ 𝐼 β‰  ( I β†Ύ 𝐡))
2422, 23jca 511 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡)))
251, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemk35s 40320 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) β†’ ⦋𝐼 / π‘”β¦Œπ‘‹ ∈ 𝑇)
265, 6, 24, 8, 9, 10, 25syl132anc 1385 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ⦋𝐼 / π‘”β¦Œπ‘‹ ∈ 𝑇)
2714, 15ltrnco 40102 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ⦋𝐺 / π‘”β¦Œπ‘‹ ∈ 𝑇 ∧ ⦋𝐼 / π‘”β¦Œπ‘‹ ∈ 𝑇) β†’ (⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹) ∈ 𝑇)
285, 21, 26, 27syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹) ∈ 𝑇)
29 simp22l 1289 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ 𝑃 ∈ 𝐴)
302, 13, 14, 15ltrnat 39523 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹) ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ ((⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹)β€˜π‘ƒ) ∈ 𝐴)
315, 28, 29, 30syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ((⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹)β€˜π‘ƒ) ∈ 𝐴)
321, 13atbase 38671 . . . . 5 (((⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹)β€˜π‘ƒ) ∈ 𝐴 β†’ ((⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹)β€˜π‘ƒ) ∈ 𝐡)
3331, 32syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ((⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹)β€˜π‘ƒ) ∈ 𝐡)
342, 13, 14, 15ltrnat 39523 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ⦋𝐺 / π‘”β¦Œπ‘‹ ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∈ 𝐴)
355, 21, 29, 34syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∈ 𝐴)
361, 13atbase 38671 . . . . . . 7 ((⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∈ 𝐴 β†’ (⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∈ 𝐡)
3735, 36syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∈ 𝐡)
381, 14, 15, 16trlcl 39547 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ⦋𝐼 / π‘”β¦Œπ‘‹ ∈ 𝑇) β†’ (π‘…β€˜β¦‹πΌ / π‘”β¦Œπ‘‹) ∈ 𝐡)
395, 26, 38syl2anc 583 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (π‘…β€˜β¦‹πΌ / π‘”β¦Œπ‘‹) ∈ 𝐡)
401, 11latjcl 18401 . . . . . 6 ((𝐾 ∈ Lat ∧ (⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∈ 𝐡 ∧ (π‘…β€˜β¦‹πΌ / π‘”β¦Œπ‘‹) ∈ 𝐡) β†’ ((⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜β¦‹πΌ / π‘”β¦Œπ‘‹)) ∈ 𝐡)
414, 37, 39, 40syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ((⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜β¦‹πΌ / π‘”β¦Œπ‘‹)) ∈ 𝐡)
422, 13, 14, 15ltrnat 39523 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ⦋𝐼 / π‘”β¦Œπ‘‹ ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∈ 𝐴)
435, 26, 29, 42syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∈ 𝐴)
441, 13atbase 38671 . . . . . . 7 ((⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∈ 𝐴 β†’ (⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∈ 𝐡)
4543, 44syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∈ 𝐡)
461, 14, 15, 16trlcl 39547 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ⦋𝐺 / π‘”β¦Œπ‘‹ ∈ 𝑇) β†’ (π‘…β€˜β¦‹πΊ / π‘”β¦Œπ‘‹) ∈ 𝐡)
475, 21, 46syl2anc 583 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (π‘…β€˜β¦‹πΊ / π‘”β¦Œπ‘‹) ∈ 𝐡)
481, 11latjcl 18401 . . . . . 6 ((𝐾 ∈ Lat ∧ (⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∈ 𝐡 ∧ (π‘…β€˜β¦‹πΊ / π‘”β¦Œπ‘‹) ∈ 𝐡) β†’ ((⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜β¦‹πΊ / π‘”β¦Œπ‘‹)) ∈ 𝐡)
494, 45, 47, 48syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ((⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜β¦‹πΊ / π‘”β¦Œπ‘‹)) ∈ 𝐡)
501, 12latmcl 18402 . . . . 5 ((𝐾 ∈ Lat ∧ ((⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜β¦‹πΌ / π‘”β¦Œπ‘‹)) ∈ 𝐡 ∧ ((⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜β¦‹πΊ / π‘”β¦Œπ‘‹)) ∈ 𝐡) β†’ (((⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜β¦‹πΌ / π‘”β¦Œπ‘‹)) ∧ ((⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜β¦‹πΊ / π‘”β¦Œπ‘‹))) ∈ 𝐡)
514, 41, 49, 50syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (((⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜β¦‹πΌ / π‘”β¦Œπ‘‹)) ∧ ((⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜β¦‹πΊ / π‘”β¦Œπ‘‹))) ∈ 𝐡)
52 simp11r 1282 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ π‘Š ∈ 𝐻)
531, 13, 14, 15, 16trlnidat 39556 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡)) β†’ (π‘…β€˜πΌ) ∈ 𝐴)
543, 52, 22, 23, 53syl211anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (π‘…β€˜πΌ) ∈ 𝐴)
551, 11, 13hlatjcl 38749 . . . . . 6 ((𝐾 ∈ HL ∧ (⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∈ 𝐴 ∧ (π‘…β€˜πΌ) ∈ 𝐴) β†’ ((⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜πΌ)) ∈ 𝐡)
563, 35, 54, 55syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ((⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜πΌ)) ∈ 𝐡)
57 simp13l 1285 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ 𝐺 ∈ 𝑇)
58 simp13r 1286 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ 𝐺 β‰  ( I β†Ύ 𝐡))
591, 13, 14, 15, 16trlnidat 39556 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) β†’ (π‘…β€˜πΊ) ∈ 𝐴)
603, 52, 57, 58, 59syl211anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (π‘…β€˜πΊ) ∈ 𝐴)
611, 11, 13hlatjcl 38749 . . . . . 6 ((𝐾 ∈ HL ∧ (⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∈ 𝐴 ∧ (π‘…β€˜πΊ) ∈ 𝐴) β†’ ((⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜πΊ)) ∈ 𝐡)
623, 43, 60, 61syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ((⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜πΊ)) ∈ 𝐡)
631, 12latmcl 18402 . . . . 5 ((𝐾 ∈ Lat ∧ ((⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜πΌ)) ∈ 𝐡 ∧ ((⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜πΊ)) ∈ 𝐡) β†’ (((⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜πΌ)) ∧ ((⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜πΊ))) ∈ 𝐡)
644, 56, 62, 63syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (((⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜πΌ)) ∧ ((⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜πΊ))) ∈ 𝐡)
651, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemk50 40335 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡))) β†’ ((⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹)β€˜π‘ƒ) ≀ (((⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜β¦‹πΌ / π‘”β¦Œπ‘‹)) ∧ ((⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜β¦‹πΊ / π‘”β¦Œπ‘‹))))
6624, 65syld3an3 1406 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ((⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹)β€˜π‘ƒ) ≀ (((⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜β¦‹πΌ / π‘”β¦Œπ‘‹)) ∧ ((⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜β¦‹πΊ / π‘”β¦Œπ‘‹))))
671, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemk51 40336 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡))) β†’ (((⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜β¦‹πΌ / π‘”β¦Œπ‘‹)) ∧ ((⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜β¦‹πΊ / π‘”β¦Œπ‘‹))) ≀ (((⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜πΌ)) ∧ ((⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜πΊ))))
6824, 67syld3an3 1406 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (((⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜β¦‹πΌ / π‘”β¦Œπ‘‹)) ∧ ((⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜β¦‹πΊ / π‘”β¦Œπ‘‹))) ≀ (((⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜πΌ)) ∧ ((⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜πΊ))))
691, 2, 4, 33, 51, 64, 66, 68lattrd 18408 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ((⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹)β€˜π‘ƒ) ≀ (((⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜πΌ)) ∧ ((⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜πΊ))))
701, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemk47 40332 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹β€˜π‘ƒ) = (((⦋𝐺 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜πΌ)) ∧ ((⦋𝐼 / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∨ (π‘…β€˜πΊ))))
7169, 70breqtrrd 5169 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ((⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹)β€˜π‘ƒ) ≀ (⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹β€˜π‘ƒ))
72 hlatl 38742 . . . 4 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
733, 72syl 17 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ 𝐾 ∈ AtLat)
7414, 15ltrnco 40102 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝐼 ∈ 𝑇) β†’ (𝐺 ∘ 𝐼) ∈ 𝑇)
755, 57, 22, 74syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (𝐺 ∘ 𝐼) ∈ 𝑇)
7657, 22jca 511 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (𝐺 ∈ 𝑇 ∧ 𝐼 ∈ 𝑇))
77 simp33 1208 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))
781, 14, 15, 16trlconid 40108 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝐼 ∈ 𝑇) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ)) β†’ (𝐺 ∘ 𝐼) β‰  ( I β†Ύ 𝐡))
795, 76, 77, 78syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (𝐺 ∘ 𝐼) β‰  ( I β†Ύ 𝐡))
8075, 79jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ((𝐺 ∘ 𝐼) ∈ 𝑇 ∧ (𝐺 ∘ 𝐼) β‰  ( I β†Ύ 𝐡)))
811, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemk35s 40320 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ ((𝐺 ∘ 𝐼) ∈ 𝑇 ∧ (𝐺 ∘ 𝐼) β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) β†’ ⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹ ∈ 𝑇)
825, 6, 80, 8, 9, 10, 81syl132anc 1385 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹ ∈ 𝑇)
832, 13, 14, 15ltrnat 39523 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹ ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∈ 𝐴)
845, 82, 29, 83syl3anc 1368 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∈ 𝐴)
852, 13atcmp 38693 . . 3 ((𝐾 ∈ AtLat ∧ ((⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹)β€˜π‘ƒ) ∈ 𝐴 ∧ (⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹β€˜π‘ƒ) ∈ 𝐴) β†’ (((⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹)β€˜π‘ƒ) ≀ (⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹β€˜π‘ƒ) ↔ ((⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹)β€˜π‘ƒ) = (⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹β€˜π‘ƒ)))
8673, 31, 84, 85syl3anc 1368 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (((⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹)β€˜π‘ƒ) ≀ (⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹β€˜π‘ƒ) ↔ ((⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹)β€˜π‘ƒ) = (⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹β€˜π‘ƒ)))
8771, 86mpbid 231 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ((⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹)β€˜π‘ƒ) = (⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹β€˜π‘ƒ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆ€wral 3055  β¦‹csb 3888   class class class wbr 5141   I cid 5566  β—‘ccnv 5668   β†Ύ cres 5671   ∘ ccom 5673  β€˜cfv 6536  β„©crio 7359  (class class class)co 7404  Basecbs 17150  lecple 17210  joincjn 18273  meetcmee 18274  Latclat 18393  Atomscatm 38645  AtLatcal 38646  HLchlt 38732  LHypclh 39367  LTrncltrn 39484  trLctrl 39541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-riotaBAD 38335
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-undef 8256  df-map 8821  df-proset 18257  df-poset 18275  df-plt 18292  df-lub 18308  df-glb 18309  df-join 18310  df-meet 18311  df-p0 18387  df-p1 18388  df-lat 18394  df-clat 18461  df-oposet 38558  df-ol 38560  df-oml 38561  df-covers 38648  df-ats 38649  df-atl 38680  df-cvlat 38704  df-hlat 38733  df-llines 38881  df-lplanes 38882  df-lvols 38883  df-lines 38884  df-psubsp 38886  df-pmap 38887  df-padd 39179  df-lhyp 39371  df-laut 39372  df-ldil 39487  df-ltrn 39488  df-trl 39542
This theorem is referenced by:  cdlemk53a  40338
  Copyright terms: Public domain W3C validator