Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcone Structured version   Visualization version   GIF version

Theorem trlcone 38669
Description: If two translations have different traces, the trace of their composition is also different. (Contributed by NM, 14-Jun-2013.)
Hypotheses
Ref Expression
trlcone.b 𝐵 = (Base‘𝐾)
trlcone.h 𝐻 = (LHyp‘𝐾)
trlcone.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcone.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcone (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))

Proof of Theorem trlcone
StepHypRef Expression
1 simpl3l 1226 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ≠ (𝑅𝐺))
2 simp11 1201 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp12l 1284 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐹𝑇)
4 trlcone.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
5 trlcone.t . . . . . . . . . . 11 𝑇 = ((LTrn‘𝐾)‘𝑊)
64, 5ltrncnv 38087 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
72, 3, 6syl2anc 583 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐹𝑇)
8 simp12r 1285 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺𝑇)
94, 5ltrnco 38660 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
102, 3, 8, 9syl3anc 1369 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝐹𝐺) ∈ 𝑇)
11 eqid 2738 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
12 eqid 2738 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
13 trlcone.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
1411, 12, 4, 5, 13trlco 38668 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐹𝐺) ∈ 𝑇) → (𝑅‘(𝐹 ∘ (𝐹𝐺)))(le‘𝐾)((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
152, 7, 10, 14syl3anc 1369 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅‘(𝐹 ∘ (𝐹𝐺)))(le‘𝐾)((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
16 trlcone.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝐾)
1716, 4, 5ltrn1o 38065 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
182, 3, 17syl2anc 583 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐹:𝐵1-1-onto𝐵)
19 f1ococnv1 6728 . . . . . . . . . . . . 13 (𝐹:𝐵1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
2018, 19syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝐹𝐹) = ( I ↾ 𝐵))
2120coeq1d 5759 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ 𝐵) ∘ 𝐺))
2216, 4, 5ltrn1o 38065 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:𝐵1-1-onto𝐵)
232, 8, 22syl2anc 583 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺:𝐵1-1-onto𝐵)
24 f1of 6700 . . . . . . . . . . . 12 (𝐺:𝐵1-1-onto𝐵𝐺:𝐵𝐵)
25 fcoi2 6633 . . . . . . . . . . . 12 (𝐺:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
2623, 24, 253syl 18 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
2721, 26eqtrd 2778 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝐹𝐹) ∘ 𝐺) = 𝐺)
28 coass 6158 . . . . . . . . . 10 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
2927, 28eqtr3di 2794 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺 = (𝐹 ∘ (𝐹𝐺)))
3029fveq2d 6760 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺) = (𝑅‘(𝐹 ∘ (𝐹𝐺))))
31 simp11l 1282 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐾 ∈ HL)
32 simp2 1135 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) ∈ (Atoms‘𝐾))
33 eqid 2738 . . . . . . . . . . 11 (Atoms‘𝐾) = (Atoms‘𝐾)
3412, 33hlatjidm 37310 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐹)(join‘𝐾)(𝑅𝐹)) = (𝑅𝐹))
3531, 32, 34syl2anc 583 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝑅𝐹)(join‘𝐾)(𝑅𝐹)) = (𝑅𝐹))
364, 5, 13trlcnv 38106 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
372, 3, 36syl2anc 583 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅𝐹))
3837eqcomd 2744 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅𝐹))
39 simp3 1136 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅‘(𝐹𝐺)))
4038, 39oveq12d 7273 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝑅𝐹)(join‘𝐾)(𝑅𝐹)) = ((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
4135, 40eqtr3d 2780 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = ((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
4215, 30, 413brtr4d 5102 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺)(le‘𝐾)(𝑅𝐹))
43 hlatl 37301 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
4431, 43syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐾 ∈ AtLat)
45 simp13r 1287 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺 ≠ ( I ↾ 𝐵))
4616, 33, 4, 5, 13trlnidat 38114 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) → (𝑅𝐺) ∈ (Atoms‘𝐾))
472, 8, 45, 46syl3anc 1369 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺) ∈ (Atoms‘𝐾))
4811, 33atcmp 37252 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ (𝑅𝐺) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐺)(le‘𝐾)(𝑅𝐹) ↔ (𝑅𝐺) = (𝑅𝐹)))
4944, 47, 32, 48syl3anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝑅𝐺)(le‘𝐾)(𝑅𝐹) ↔ (𝑅𝐺) = (𝑅𝐹)))
5042, 49mpbid 231 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺) = (𝑅𝐹))
5150eqcomd 2744 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅𝐺))
52513expia 1119 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐹) = (𝑅‘(𝐹𝐺)) → (𝑅𝐹) = (𝑅𝐺)))
5352necon3d 2963 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐹) ≠ (𝑅𝐺) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺))))
541, 53mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
55 simpl3r 1227 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺 ≠ ( I ↾ 𝐵))
56 simpl1 1189 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
57 simpl2r 1225 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺𝑇)
58 eqid 2738 . . . . . . . 8 (0.‘𝐾) = (0.‘𝐾)
5916, 58, 4, 5, 13trlid0b 38119 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅𝐺) = (0.‘𝐾)))
6056, 57, 59syl2anc 583 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅𝐺) = (0.‘𝐾)))
6160necon3bid 2987 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐺 ≠ ( I ↾ 𝐵) ↔ (𝑅𝐺) ≠ (0.‘𝐾)))
6255, 61mpbid 231 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝐺) ≠ (0.‘𝐾))
6362necomd 2998 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (0.‘𝐾) ≠ (𝑅𝐺))
64 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝐹) = (0.‘𝐾))
65 simpl2l 1224 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐹𝑇)
6616, 58, 4, 5, 13trlid0b 38119 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅𝐹) = (0.‘𝐾)))
6756, 65, 66syl2anc 583 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅𝐹) = (0.‘𝐾)))
6864, 67mpbird 256 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐹 = ( I ↾ 𝐵))
6968coeq1d 5759 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐹𝐺) = (( I ↾ 𝐵) ∘ 𝐺))
7056, 57, 22syl2anc 583 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺:𝐵1-1-onto𝐵)
7170, 24, 253syl 18 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
7269, 71eqtrd 2778 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐹𝐺) = 𝐺)
7372fveq2d 6760 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅‘(𝐹𝐺)) = (𝑅𝐺))
7463, 64, 733netr4d 3020 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
75 simp1 1134 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
76 simp2l 1197 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → 𝐹𝑇)
7758, 33, 4, 5, 13trlator0 38112 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
7875, 76, 77syl2anc 583 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
7954, 74, 78mpjaodan 955 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070   I cid 5479  ccnv 5579  cres 5582  ccom 5584  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  0.cp0 18056  Atomscatm 37204  AtLatcal 37205  HLchlt 37291  LHypclh 37925  LTrncltrn 38042  trLctrl 38099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-undef 8060  df-map 8575  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100
This theorem is referenced by:  trljco  38681  cdlemh2  38757  cdlemh  38758  cdlemk3  38774  cdlemk12  38791  cdlemk12u  38813  cdlemkfid1N  38862  cdlemk54  38899
  Copyright terms: Public domain W3C validator