Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcone Structured version   Visualization version   GIF version

Theorem trlcone 40747
Description: If two translations have different traces, the trace of their composition is also different. (Contributed by NM, 14-Jun-2013.)
Hypotheses
Ref Expression
trlcone.b 𝐵 = (Base‘𝐾)
trlcone.h 𝐻 = (LHyp‘𝐾)
trlcone.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcone.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcone (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))

Proof of Theorem trlcone
StepHypRef Expression
1 simpl3l 1229 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ≠ (𝑅𝐺))
2 simp11 1204 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp12l 1287 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐹𝑇)
4 trlcone.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
5 trlcone.t . . . . . . . . . . 11 𝑇 = ((LTrn‘𝐾)‘𝑊)
64, 5ltrncnv 40165 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
72, 3, 6syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐹𝑇)
8 simp12r 1288 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺𝑇)
94, 5ltrnco 40738 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
102, 3, 8, 9syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝐹𝐺) ∈ 𝑇)
11 eqid 2735 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
12 eqid 2735 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
13 trlcone.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
1411, 12, 4, 5, 13trlco 40746 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐹𝐺) ∈ 𝑇) → (𝑅‘(𝐹 ∘ (𝐹𝐺)))(le‘𝐾)((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
152, 7, 10, 14syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅‘(𝐹 ∘ (𝐹𝐺)))(le‘𝐾)((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
16 trlcone.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝐾)
1716, 4, 5ltrn1o 40143 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
182, 3, 17syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐹:𝐵1-1-onto𝐵)
19 f1ococnv1 6847 . . . . . . . . . . . . 13 (𝐹:𝐵1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
2018, 19syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝐹𝐹) = ( I ↾ 𝐵))
2120coeq1d 5841 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ 𝐵) ∘ 𝐺))
2216, 4, 5ltrn1o 40143 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:𝐵1-1-onto𝐵)
232, 8, 22syl2anc 584 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺:𝐵1-1-onto𝐵)
24 f1of 6818 . . . . . . . . . . . 12 (𝐺:𝐵1-1-onto𝐵𝐺:𝐵𝐵)
25 fcoi2 6753 . . . . . . . . . . . 12 (𝐺:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
2623, 24, 253syl 18 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
2721, 26eqtrd 2770 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝐹𝐹) ∘ 𝐺) = 𝐺)
28 coass 6254 . . . . . . . . . 10 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
2927, 28eqtr3di 2785 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺 = (𝐹 ∘ (𝐹𝐺)))
3029fveq2d 6880 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺) = (𝑅‘(𝐹 ∘ (𝐹𝐺))))
31 simp11l 1285 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐾 ∈ HL)
32 simp2 1137 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) ∈ (Atoms‘𝐾))
33 eqid 2735 . . . . . . . . . . 11 (Atoms‘𝐾) = (Atoms‘𝐾)
3412, 33hlatjidm 39387 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐹)(join‘𝐾)(𝑅𝐹)) = (𝑅𝐹))
3531, 32, 34syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝑅𝐹)(join‘𝐾)(𝑅𝐹)) = (𝑅𝐹))
364, 5, 13trlcnv 40184 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
372, 3, 36syl2anc 584 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅𝐹))
3837eqcomd 2741 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅𝐹))
39 simp3 1138 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅‘(𝐹𝐺)))
4038, 39oveq12d 7423 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝑅𝐹)(join‘𝐾)(𝑅𝐹)) = ((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
4135, 40eqtr3d 2772 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = ((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
4215, 30, 413brtr4d 5151 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺)(le‘𝐾)(𝑅𝐹))
43 hlatl 39378 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
4431, 43syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐾 ∈ AtLat)
45 simp13r 1290 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺 ≠ ( I ↾ 𝐵))
4616, 33, 4, 5, 13trlnidat 40192 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) → (𝑅𝐺) ∈ (Atoms‘𝐾))
472, 8, 45, 46syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺) ∈ (Atoms‘𝐾))
4811, 33atcmp 39329 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ (𝑅𝐺) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐺)(le‘𝐾)(𝑅𝐹) ↔ (𝑅𝐺) = (𝑅𝐹)))
4944, 47, 32, 48syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝑅𝐺)(le‘𝐾)(𝑅𝐹) ↔ (𝑅𝐺) = (𝑅𝐹)))
5042, 49mpbid 232 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺) = (𝑅𝐹))
5150eqcomd 2741 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅𝐺))
52513expia 1121 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐹) = (𝑅‘(𝐹𝐺)) → (𝑅𝐹) = (𝑅𝐺)))
5352necon3d 2953 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐹) ≠ (𝑅𝐺) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺))))
541, 53mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
55 simpl3r 1230 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺 ≠ ( I ↾ 𝐵))
56 simpl1 1192 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
57 simpl2r 1228 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺𝑇)
58 eqid 2735 . . . . . . . 8 (0.‘𝐾) = (0.‘𝐾)
5916, 58, 4, 5, 13trlid0b 40197 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅𝐺) = (0.‘𝐾)))
6056, 57, 59syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅𝐺) = (0.‘𝐾)))
6160necon3bid 2976 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐺 ≠ ( I ↾ 𝐵) ↔ (𝑅𝐺) ≠ (0.‘𝐾)))
6255, 61mpbid 232 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝐺) ≠ (0.‘𝐾))
6362necomd 2987 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (0.‘𝐾) ≠ (𝑅𝐺))
64 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝐹) = (0.‘𝐾))
65 simpl2l 1227 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐹𝑇)
6616, 58, 4, 5, 13trlid0b 40197 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅𝐹) = (0.‘𝐾)))
6756, 65, 66syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅𝐹) = (0.‘𝐾)))
6864, 67mpbird 257 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐹 = ( I ↾ 𝐵))
6968coeq1d 5841 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐹𝐺) = (( I ↾ 𝐵) ∘ 𝐺))
7056, 57, 22syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺:𝐵1-1-onto𝐵)
7170, 24, 253syl 18 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
7269, 71eqtrd 2770 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐹𝐺) = 𝐺)
7372fveq2d 6880 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅‘(𝐹𝐺)) = (𝑅𝐺))
7463, 64, 733netr4d 3009 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
75 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
76 simp2l 1200 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → 𝐹𝑇)
7758, 33, 4, 5, 13trlator0 40190 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
7875, 76, 77syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
7954, 74, 78mpjaodan 960 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119   I cid 5547  ccnv 5653  cres 5656  ccom 5658  wf 6527  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  joincjn 18323  0.cp0 18433  Atomscatm 39281  AtLatcal 39282  HLchlt 39368  LHypclh 40003  LTrncltrn 40120  trLctrl 40177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-riotaBAD 38971
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-undef 8272  df-map 8842  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517  df-lplanes 39518  df-lvols 39519  df-lines 39520  df-psubsp 39522  df-pmap 39523  df-padd 39815  df-lhyp 40007  df-laut 40008  df-ldil 40123  df-ltrn 40124  df-trl 40178
This theorem is referenced by:  trljco  40759  cdlemh2  40835  cdlemh  40836  cdlemk3  40852  cdlemk12  40869  cdlemk12u  40891  cdlemkfid1N  40940  cdlemk54  40977
  Copyright terms: Public domain W3C validator