Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcone Structured version   Visualization version   GIF version

Theorem trlcone 40201
Description: If two translations have different traces, the trace of their composition is also different. (Contributed by NM, 14-Jun-2013.)
Hypotheses
Ref Expression
trlcone.b 𝐵 = (Base‘𝐾)
trlcone.h 𝐻 = (LHyp‘𝐾)
trlcone.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcone.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcone (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))

Proof of Theorem trlcone
StepHypRef Expression
1 simpl3l 1226 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ≠ (𝑅𝐺))
2 simp11 1201 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp12l 1284 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐹𝑇)
4 trlcone.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
5 trlcone.t . . . . . . . . . . 11 𝑇 = ((LTrn‘𝐾)‘𝑊)
64, 5ltrncnv 39619 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
72, 3, 6syl2anc 583 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐹𝑇)
8 simp12r 1285 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺𝑇)
94, 5ltrnco 40192 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
102, 3, 8, 9syl3anc 1369 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝐹𝐺) ∈ 𝑇)
11 eqid 2728 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
12 eqid 2728 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
13 trlcone.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
1411, 12, 4, 5, 13trlco 40200 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐹𝐺) ∈ 𝑇) → (𝑅‘(𝐹 ∘ (𝐹𝐺)))(le‘𝐾)((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
152, 7, 10, 14syl3anc 1369 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅‘(𝐹 ∘ (𝐹𝐺)))(le‘𝐾)((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
16 trlcone.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝐾)
1716, 4, 5ltrn1o 39597 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
182, 3, 17syl2anc 583 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐹:𝐵1-1-onto𝐵)
19 f1ococnv1 6868 . . . . . . . . . . . . 13 (𝐹:𝐵1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
2018, 19syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝐹𝐹) = ( I ↾ 𝐵))
2120coeq1d 5864 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ 𝐵) ∘ 𝐺))
2216, 4, 5ltrn1o 39597 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:𝐵1-1-onto𝐵)
232, 8, 22syl2anc 583 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺:𝐵1-1-onto𝐵)
24 f1of 6839 . . . . . . . . . . . 12 (𝐺:𝐵1-1-onto𝐵𝐺:𝐵𝐵)
25 fcoi2 6772 . . . . . . . . . . . 12 (𝐺:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
2623, 24, 253syl 18 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
2721, 26eqtrd 2768 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝐹𝐹) ∘ 𝐺) = 𝐺)
28 coass 6269 . . . . . . . . . 10 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
2927, 28eqtr3di 2783 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺 = (𝐹 ∘ (𝐹𝐺)))
3029fveq2d 6901 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺) = (𝑅‘(𝐹 ∘ (𝐹𝐺))))
31 simp11l 1282 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐾 ∈ HL)
32 simp2 1135 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) ∈ (Atoms‘𝐾))
33 eqid 2728 . . . . . . . . . . 11 (Atoms‘𝐾) = (Atoms‘𝐾)
3412, 33hlatjidm 38841 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐹)(join‘𝐾)(𝑅𝐹)) = (𝑅𝐹))
3531, 32, 34syl2anc 583 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝑅𝐹)(join‘𝐾)(𝑅𝐹)) = (𝑅𝐹))
364, 5, 13trlcnv 39638 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
372, 3, 36syl2anc 583 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅𝐹))
3837eqcomd 2734 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅𝐹))
39 simp3 1136 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅‘(𝐹𝐺)))
4038, 39oveq12d 7438 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝑅𝐹)(join‘𝐾)(𝑅𝐹)) = ((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
4135, 40eqtr3d 2770 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = ((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
4215, 30, 413brtr4d 5180 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺)(le‘𝐾)(𝑅𝐹))
43 hlatl 38832 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
4431, 43syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐾 ∈ AtLat)
45 simp13r 1287 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺 ≠ ( I ↾ 𝐵))
4616, 33, 4, 5, 13trlnidat 39646 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) → (𝑅𝐺) ∈ (Atoms‘𝐾))
472, 8, 45, 46syl3anc 1369 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺) ∈ (Atoms‘𝐾))
4811, 33atcmp 38783 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ (𝑅𝐺) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐺)(le‘𝐾)(𝑅𝐹) ↔ (𝑅𝐺) = (𝑅𝐹)))
4944, 47, 32, 48syl3anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝑅𝐺)(le‘𝐾)(𝑅𝐹) ↔ (𝑅𝐺) = (𝑅𝐹)))
5042, 49mpbid 231 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺) = (𝑅𝐹))
5150eqcomd 2734 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅𝐺))
52513expia 1119 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐹) = (𝑅‘(𝐹𝐺)) → (𝑅𝐹) = (𝑅𝐺)))
5352necon3d 2958 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐹) ≠ (𝑅𝐺) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺))))
541, 53mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
55 simpl3r 1227 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺 ≠ ( I ↾ 𝐵))
56 simpl1 1189 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
57 simpl2r 1225 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺𝑇)
58 eqid 2728 . . . . . . . 8 (0.‘𝐾) = (0.‘𝐾)
5916, 58, 4, 5, 13trlid0b 39651 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅𝐺) = (0.‘𝐾)))
6056, 57, 59syl2anc 583 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅𝐺) = (0.‘𝐾)))
6160necon3bid 2982 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐺 ≠ ( I ↾ 𝐵) ↔ (𝑅𝐺) ≠ (0.‘𝐾)))
6255, 61mpbid 231 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝐺) ≠ (0.‘𝐾))
6362necomd 2993 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (0.‘𝐾) ≠ (𝑅𝐺))
64 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝐹) = (0.‘𝐾))
65 simpl2l 1224 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐹𝑇)
6616, 58, 4, 5, 13trlid0b 39651 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅𝐹) = (0.‘𝐾)))
6756, 65, 66syl2anc 583 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅𝐹) = (0.‘𝐾)))
6864, 67mpbird 257 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐹 = ( I ↾ 𝐵))
6968coeq1d 5864 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐹𝐺) = (( I ↾ 𝐵) ∘ 𝐺))
7056, 57, 22syl2anc 583 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺:𝐵1-1-onto𝐵)
7170, 24, 253syl 18 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
7269, 71eqtrd 2768 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐹𝐺) = 𝐺)
7372fveq2d 6901 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅‘(𝐹𝐺)) = (𝑅𝐺))
7463, 64, 733netr4d 3015 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
75 simp1 1134 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
76 simp2l 1197 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → 𝐹𝑇)
7758, 33, 4, 5, 13trlator0 39644 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
7875, 76, 77syl2anc 583 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
7954, 74, 78mpjaodan 957 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 846  w3a 1085   = wceq 1534  wcel 2099  wne 2937   class class class wbr 5148   I cid 5575  ccnv 5677  cres 5680  ccom 5682  wf 6544  1-1-ontowf1o 6547  cfv 6548  (class class class)co 7420  Basecbs 17179  lecple 17239  joincjn 18302  0.cp0 18414  Atomscatm 38735  AtLatcal 38736  HLchlt 38822  LHypclh 39457  LTrncltrn 39574  trLctrl 39631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-riotaBAD 38425
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-undef 8278  df-map 8846  df-proset 18286  df-poset 18304  df-plt 18321  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-p0 18416  df-p1 18417  df-lat 18423  df-clat 18490  df-oposet 38648  df-ol 38650  df-oml 38651  df-covers 38738  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823  df-llines 38971  df-lplanes 38972  df-lvols 38973  df-lines 38974  df-psubsp 38976  df-pmap 38977  df-padd 39269  df-lhyp 39461  df-laut 39462  df-ldil 39577  df-ltrn 39578  df-trl 39632
This theorem is referenced by:  trljco  40213  cdlemh2  40289  cdlemh  40290  cdlemk3  40306  cdlemk12  40323  cdlemk12u  40345  cdlemkfid1N  40394  cdlemk54  40431
  Copyright terms: Public domain W3C validator