Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcone Structured version   Visualization version   GIF version

Theorem trlcone 40766
Description: If two translations have different traces, the trace of their composition is also different. (Contributed by NM, 14-Jun-2013.)
Hypotheses
Ref Expression
trlcone.b 𝐵 = (Base‘𝐾)
trlcone.h 𝐻 = (LHyp‘𝐾)
trlcone.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcone.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcone (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))

Proof of Theorem trlcone
StepHypRef Expression
1 simpl3l 1229 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ≠ (𝑅𝐺))
2 simp11 1204 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp12l 1287 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐹𝑇)
4 trlcone.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
5 trlcone.t . . . . . . . . . . 11 𝑇 = ((LTrn‘𝐾)‘𝑊)
64, 5ltrncnv 40184 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
72, 3, 6syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐹𝑇)
8 simp12r 1288 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺𝑇)
94, 5ltrnco 40757 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
102, 3, 8, 9syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝐹𝐺) ∈ 𝑇)
11 eqid 2731 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
12 eqid 2731 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
13 trlcone.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
1411, 12, 4, 5, 13trlco 40765 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐹𝐺) ∈ 𝑇) → (𝑅‘(𝐹 ∘ (𝐹𝐺)))(le‘𝐾)((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
152, 7, 10, 14syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅‘(𝐹 ∘ (𝐹𝐺)))(le‘𝐾)((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
16 trlcone.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝐾)
1716, 4, 5ltrn1o 40162 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
182, 3, 17syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐹:𝐵1-1-onto𝐵)
19 f1ococnv1 6792 . . . . . . . . . . . . 13 (𝐹:𝐵1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
2018, 19syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝐹𝐹) = ( I ↾ 𝐵))
2120coeq1d 5801 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ 𝐵) ∘ 𝐺))
2216, 4, 5ltrn1o 40162 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:𝐵1-1-onto𝐵)
232, 8, 22syl2anc 584 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺:𝐵1-1-onto𝐵)
24 f1of 6763 . . . . . . . . . . . 12 (𝐺:𝐵1-1-onto𝐵𝐺:𝐵𝐵)
25 fcoi2 6698 . . . . . . . . . . . 12 (𝐺:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
2623, 24, 253syl 18 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
2721, 26eqtrd 2766 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝐹𝐹) ∘ 𝐺) = 𝐺)
28 coass 6213 . . . . . . . . . 10 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
2927, 28eqtr3di 2781 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺 = (𝐹 ∘ (𝐹𝐺)))
3029fveq2d 6826 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺) = (𝑅‘(𝐹 ∘ (𝐹𝐺))))
31 simp11l 1285 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐾 ∈ HL)
32 simp2 1137 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) ∈ (Atoms‘𝐾))
33 eqid 2731 . . . . . . . . . . 11 (Atoms‘𝐾) = (Atoms‘𝐾)
3412, 33hlatjidm 39407 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐹)(join‘𝐾)(𝑅𝐹)) = (𝑅𝐹))
3531, 32, 34syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝑅𝐹)(join‘𝐾)(𝑅𝐹)) = (𝑅𝐹))
364, 5, 13trlcnv 40203 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
372, 3, 36syl2anc 584 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅𝐹))
3837eqcomd 2737 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅𝐹))
39 simp3 1138 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅‘(𝐹𝐺)))
4038, 39oveq12d 7364 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝑅𝐹)(join‘𝐾)(𝑅𝐹)) = ((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
4135, 40eqtr3d 2768 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = ((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
4215, 30, 413brtr4d 5123 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺)(le‘𝐾)(𝑅𝐹))
43 hlatl 39398 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
4431, 43syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐾 ∈ AtLat)
45 simp13r 1290 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺 ≠ ( I ↾ 𝐵))
4616, 33, 4, 5, 13trlnidat 40211 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) → (𝑅𝐺) ∈ (Atoms‘𝐾))
472, 8, 45, 46syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺) ∈ (Atoms‘𝐾))
4811, 33atcmp 39349 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ (𝑅𝐺) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐺)(le‘𝐾)(𝑅𝐹) ↔ (𝑅𝐺) = (𝑅𝐹)))
4944, 47, 32, 48syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝑅𝐺)(le‘𝐾)(𝑅𝐹) ↔ (𝑅𝐺) = (𝑅𝐹)))
5042, 49mpbid 232 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺) = (𝑅𝐹))
5150eqcomd 2737 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅𝐺))
52513expia 1121 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐹) = (𝑅‘(𝐹𝐺)) → (𝑅𝐹) = (𝑅𝐺)))
5352necon3d 2949 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐹) ≠ (𝑅𝐺) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺))))
541, 53mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
55 simpl3r 1230 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺 ≠ ( I ↾ 𝐵))
56 simpl1 1192 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
57 simpl2r 1228 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺𝑇)
58 eqid 2731 . . . . . . . 8 (0.‘𝐾) = (0.‘𝐾)
5916, 58, 4, 5, 13trlid0b 40216 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅𝐺) = (0.‘𝐾)))
6056, 57, 59syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅𝐺) = (0.‘𝐾)))
6160necon3bid 2972 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐺 ≠ ( I ↾ 𝐵) ↔ (𝑅𝐺) ≠ (0.‘𝐾)))
6255, 61mpbid 232 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝐺) ≠ (0.‘𝐾))
6362necomd 2983 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (0.‘𝐾) ≠ (𝑅𝐺))
64 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝐹) = (0.‘𝐾))
65 simpl2l 1227 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐹𝑇)
6616, 58, 4, 5, 13trlid0b 40216 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅𝐹) = (0.‘𝐾)))
6756, 65, 66syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅𝐹) = (0.‘𝐾)))
6864, 67mpbird 257 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐹 = ( I ↾ 𝐵))
6968coeq1d 5801 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐹𝐺) = (( I ↾ 𝐵) ∘ 𝐺))
7056, 57, 22syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺:𝐵1-1-onto𝐵)
7170, 24, 253syl 18 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
7269, 71eqtrd 2766 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐹𝐺) = 𝐺)
7372fveq2d 6826 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅‘(𝐹𝐺)) = (𝑅𝐺))
7463, 64, 733netr4d 3005 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
75 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
76 simp2l 1200 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → 𝐹𝑇)
7758, 33, 4, 5, 13trlator0 40209 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
7875, 76, 77syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
7954, 74, 78mpjaodan 960 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091   I cid 5510  ccnv 5615  cres 5618  ccom 5620  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Basecbs 17117  lecple 17165  joincjn 18214  0.cp0 18324  Atomscatm 39301  AtLatcal 39302  HLchlt 39388  LHypclh 40022  LTrncltrn 40139  trLctrl 40196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-riotaBAD 38991
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18197  df-poset 18216  df-plt 18231  df-lub 18247  df-glb 18248  df-join 18249  df-meet 18250  df-p0 18326  df-p1 18327  df-lat 18335  df-clat 18402  df-oposet 39214  df-ol 39216  df-oml 39217  df-covers 39304  df-ats 39305  df-atl 39336  df-cvlat 39360  df-hlat 39389  df-llines 39536  df-lplanes 39537  df-lvols 39538  df-lines 39539  df-psubsp 39541  df-pmap 39542  df-padd 39834  df-lhyp 40026  df-laut 40027  df-ldil 40142  df-ltrn 40143  df-trl 40197
This theorem is referenced by:  trljco  40778  cdlemh2  40854  cdlemh  40855  cdlemk3  40871  cdlemk12  40888  cdlemk12u  40910  cdlemkfid1N  40959  cdlemk54  40996
  Copyright terms: Public domain W3C validator