Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk51 Structured version   Visualization version   GIF version

Theorem cdlemk51 40920
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 6, p. 120. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. TODO: Combine into cdlemk52 40921? (Contributed by NM, 23-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
Assertion
Ref Expression
cdlemk51 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋))) (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺))))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ,𝑏,𝑧   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝐺,𝑏   𝐼,𝑏,𝑔,𝑧
Allowed substitution hints:   𝑋(𝑧,𝑔,𝑏)   𝑌(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk51
StepHypRef Expression
1 simp11 1204 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1205 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)))
3 simp3 1138 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵)))
4 simp21 1207 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → 𝑁𝑇)
5 simp22 1208 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
6 simp23 1209 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝑅𝐹) = (𝑅𝑁))
7 cdlemk5.b . . . . 5 𝐵 = (Base‘𝐾)
8 cdlemk5.l . . . . 5 = (le‘𝐾)
9 cdlemk5.j . . . . 5 = (join‘𝐾)
10 cdlemk5.m . . . . 5 = (meet‘𝐾)
11 cdlemk5.a . . . . 5 𝐴 = (Atoms‘𝐾)
12 cdlemk5.h . . . . 5 𝐻 = (LHyp‘𝐾)
13 cdlemk5.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 cdlemk5.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
15 cdlemk5.z . . . . 5 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
16 cdlemk5.y . . . . 5 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
17 cdlemk5.x . . . . 5 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
187, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17cdlemk39s 40906 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑅𝐼 / 𝑔𝑋) (𝑅𝐼))
191, 2, 3, 4, 5, 6, 18syl132anc 1390 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝑅𝐼 / 𝑔𝑋) (𝑅𝐼))
20 simp11l 1285 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → 𝐾 ∈ HL)
2120hllatd 39330 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → 𝐾 ∈ Lat)
227, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17cdlemk35s 40904 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐼 / 𝑔𝑋𝑇)
231, 2, 3, 4, 5, 6, 22syl132anc 1390 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → 𝐼 / 𝑔𝑋𝑇)
247, 12, 13, 14trlcl 40131 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐼 / 𝑔𝑋𝑇) → (𝑅𝐼 / 𝑔𝑋) ∈ 𝐵)
251, 23, 24syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝑅𝐼 / 𝑔𝑋) ∈ 𝐵)
26 simp3l 1202 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → 𝐼𝑇)
27 simp3r 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → 𝐼 ≠ ( I ↾ 𝐵))
287, 11, 12, 13, 14trlnidat 40140 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵)) → (𝑅𝐼) ∈ 𝐴)
291, 26, 27, 28syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝑅𝐼) ∈ 𝐴)
307, 11atbase 39255 . . . . 5 ((𝑅𝐼) ∈ 𝐴 → (𝑅𝐼) ∈ 𝐵)
3129, 30syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝑅𝐼) ∈ 𝐵)
32 simp13 1206 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)))
337, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17cdlemk35s 40904 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐺 / 𝑔𝑋𝑇)
341, 2, 32, 4, 5, 6, 33syl132anc 1390 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → 𝐺 / 𝑔𝑋𝑇)
35 simp22l 1293 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → 𝑃𝐴)
368, 11, 12, 13ltrnat 40107 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺 / 𝑔𝑋𝑇𝑃𝐴) → (𝐺 / 𝑔𝑋𝑃) ∈ 𝐴)
371, 34, 35, 36syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐺 / 𝑔𝑋𝑃) ∈ 𝐴)
387, 11atbase 39255 . . . . 5 ((𝐺 / 𝑔𝑋𝑃) ∈ 𝐴 → (𝐺 / 𝑔𝑋𝑃) ∈ 𝐵)
3937, 38syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐺 / 𝑔𝑋𝑃) ∈ 𝐵)
407, 8, 9latjlej2 18389 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑅𝐼 / 𝑔𝑋) ∈ 𝐵 ∧ (𝑅𝐼) ∈ 𝐵 ∧ (𝐺 / 𝑔𝑋𝑃) ∈ 𝐵)) → ((𝑅𝐼 / 𝑔𝑋) (𝑅𝐼) → ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼))))
4121, 25, 31, 39, 40syl13anc 1374 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝑅𝐼 / 𝑔𝑋) (𝑅𝐼) → ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼))))
4219, 41mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)))
437, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17cdlemk39s 40906 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑅𝐺 / 𝑔𝑋) (𝑅𝐺))
441, 2, 32, 4, 5, 6, 43syl132anc 1390 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝑅𝐺 / 𝑔𝑋) (𝑅𝐺))
457, 12, 13, 14trlcl 40131 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺 / 𝑔𝑋𝑇) → (𝑅𝐺 / 𝑔𝑋) ∈ 𝐵)
461, 34, 45syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝑅𝐺 / 𝑔𝑋) ∈ 𝐵)
47 simp13l 1289 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → 𝐺𝑇)
48 simp13r 1290 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → 𝐺 ≠ ( I ↾ 𝐵))
497, 11, 12, 13, 14trlnidat 40140 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) → (𝑅𝐺) ∈ 𝐴)
501, 47, 48, 49syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝑅𝐺) ∈ 𝐴)
517, 11atbase 39255 . . . . 5 ((𝑅𝐺) ∈ 𝐴 → (𝑅𝐺) ∈ 𝐵)
5250, 51syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝑅𝐺) ∈ 𝐵)
538, 11, 12, 13ltrnat 40107 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐼 / 𝑔𝑋𝑇𝑃𝐴) → (𝐼 / 𝑔𝑋𝑃) ∈ 𝐴)
541, 23, 35, 53syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐼 / 𝑔𝑋𝑃) ∈ 𝐴)
557, 11atbase 39255 . . . . 5 ((𝐼 / 𝑔𝑋𝑃) ∈ 𝐴 → (𝐼 / 𝑔𝑋𝑃) ∈ 𝐵)
5654, 55syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐼 / 𝑔𝑋𝑃) ∈ 𝐵)
577, 8, 9latjlej2 18389 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑅𝐺 / 𝑔𝑋) ∈ 𝐵 ∧ (𝑅𝐺) ∈ 𝐵 ∧ (𝐼 / 𝑔𝑋𝑃) ∈ 𝐵)) → ((𝑅𝐺 / 𝑔𝑋) (𝑅𝐺) → ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺))))
5821, 46, 52, 56, 57syl13anc 1374 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝑅𝐺 / 𝑔𝑋) (𝑅𝐺) → ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺))))
5944, 58mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺)))
607, 9latjcl 18374 . . . 4 ((𝐾 ∈ Lat ∧ (𝐺 / 𝑔𝑋𝑃) ∈ 𝐵 ∧ (𝑅𝐼 / 𝑔𝑋) ∈ 𝐵) → ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ∈ 𝐵)
6121, 39, 25, 60syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ∈ 𝐵)
627, 9, 11hlatjcl 39333 . . . 4 ((𝐾 ∈ HL ∧ (𝐺 / 𝑔𝑋𝑃) ∈ 𝐴 ∧ (𝑅𝐼) ∈ 𝐴) → ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ∈ 𝐵)
6320, 37, 29, 62syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ∈ 𝐵)
647, 9latjcl 18374 . . . 4 ((𝐾 ∈ Lat ∧ (𝐼 / 𝑔𝑋𝑃) ∈ 𝐵 ∧ (𝑅𝐺 / 𝑔𝑋) ∈ 𝐵) → ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋)) ∈ 𝐵)
6521, 56, 46, 64syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋)) ∈ 𝐵)
667, 9, 11hlatjcl 39333 . . . 4 ((𝐾 ∈ HL ∧ (𝐼 / 𝑔𝑋𝑃) ∈ 𝐴 ∧ (𝑅𝐺) ∈ 𝐴) → ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺)) ∈ 𝐵)
6720, 54, 50, 66syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺)) ∈ 𝐵)
687, 8, 10latmlem12 18406 . . 3 ((𝐾 ∈ Lat ∧ (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ∈ 𝐵 ∧ ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ∈ 𝐵) ∧ (((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋)) ∈ 𝐵 ∧ ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺)) ∈ 𝐵)) → ((((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ∧ ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺))) → (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋))) (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺)))))
6921, 61, 63, 65, 67, 68syl122anc 1381 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ∧ ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺))) → (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋))) (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺)))))
7042, 59, 69mp2and 699 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋))) (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  csb 3859   class class class wbr 5102   I cid 5525  ccnv 5630  cres 5633  ccom 5635  cfv 6499  crio 7325  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  meetcmee 18249  Latclat 18366  Atomscatm 39229  HLchlt 39316  LHypclh 39951  LTrncltrn 40068  trLctrl 40125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-riotaBAD 38919
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-undef 8229  df-map 8778  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466  df-lvols 39467  df-lines 39468  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-lhyp 39955  df-laut 39956  df-ldil 40071  df-ltrn 40072  df-trl 40126
This theorem is referenced by:  cdlemk52  40921
  Copyright terms: Public domain W3C validator