Proof of Theorem cdlemk51
Step | Hyp | Ref
| Expression |
1 | | simp11 1202 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp12 1203 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) |
3 | | simp3 1137 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) |
4 | | simp21 1205 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → 𝑁 ∈ 𝑇) |
5 | | simp22 1206 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
6 | | simp23 1207 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝑅‘𝐹) = (𝑅‘𝑁)) |
7 | | cdlemk5.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
8 | | cdlemk5.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
9 | | cdlemk5.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
10 | | cdlemk5.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
11 | | cdlemk5.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
12 | | cdlemk5.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
13 | | cdlemk5.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
14 | | cdlemk5.r |
. . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
15 | | cdlemk5.z |
. . . . 5
⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
16 | | cdlemk5.y |
. . . . 5
⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
17 | | cdlemk5.x |
. . . . 5
⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
18 | 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | cdlemk39s 38953 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → (𝑅‘⦋𝐼 / 𝑔⦌𝑋) ≤ (𝑅‘𝐼)) |
19 | 1, 2, 3, 4, 5, 6, 18 | syl132anc 1387 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝑅‘⦋𝐼 / 𝑔⦌𝑋) ≤ (𝑅‘𝐼)) |
20 | | simp11l 1283 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → 𝐾 ∈ HL) |
21 | 20 | hllatd 37378 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → 𝐾 ∈ Lat) |
22 | 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | cdlemk35s 38951 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → ⦋𝐼 / 𝑔⦌𝑋 ∈ 𝑇) |
23 | 1, 2, 3, 4, 5, 6, 22 | syl132anc 1387 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ⦋𝐼 / 𝑔⦌𝑋 ∈ 𝑇) |
24 | 7, 12, 13, 14 | trlcl 38178 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ⦋𝐼 / 𝑔⦌𝑋 ∈ 𝑇) → (𝑅‘⦋𝐼 / 𝑔⦌𝑋) ∈ 𝐵) |
25 | 1, 23, 24 | syl2anc 584 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝑅‘⦋𝐼 / 𝑔⦌𝑋) ∈ 𝐵) |
26 | | simp3l 1200 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → 𝐼 ∈ 𝑇) |
27 | | simp3r 1201 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → 𝐼 ≠ ( I ↾ 𝐵)) |
28 | 7, 11, 12, 13, 14 | trlnidat 38187 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵)) → (𝑅‘𝐼) ∈ 𝐴) |
29 | 1, 26, 27, 28 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝑅‘𝐼) ∈ 𝐴) |
30 | 7, 11 | atbase 37303 |
. . . . 5
⊢ ((𝑅‘𝐼) ∈ 𝐴 → (𝑅‘𝐼) ∈ 𝐵) |
31 | 29, 30 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝑅‘𝐼) ∈ 𝐵) |
32 | | simp13 1204 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) |
33 | 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | cdlemk35s 38951 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇) |
34 | 1, 2, 32, 4, 5, 6,
33 | syl132anc 1387 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇) |
35 | | simp22l 1291 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → 𝑃 ∈ 𝐴) |
36 | 8, 11, 12, 13 | ltrnat 38154 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∈ 𝐴) |
37 | 1, 34, 35, 36 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∈ 𝐴) |
38 | 7, 11 | atbase 37303 |
. . . . 5
⊢
((⦋𝐺 /
𝑔⦌𝑋‘𝑃) ∈ 𝐴 → (⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∈ 𝐵) |
39 | 37, 38 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∈ 𝐵) |
40 | 7, 8, 9 | latjlej2 18172 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ ((𝑅‘⦋𝐼 / 𝑔⦌𝑋) ∈ 𝐵 ∧ (𝑅‘𝐼) ∈ 𝐵 ∧ (⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∈ 𝐵)) → ((𝑅‘⦋𝐼 / 𝑔⦌𝑋) ≤ (𝑅‘𝐼) → ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋)) ≤ ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐼)))) |
41 | 21, 25, 31, 39, 40 | syl13anc 1371 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ((𝑅‘⦋𝐼 / 𝑔⦌𝑋) ≤ (𝑅‘𝐼) → ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋)) ≤ ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐼)))) |
42 | 19, 41 | mpd 15 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋)) ≤ ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐼))) |
43 | 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | cdlemk39s 38953 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → (𝑅‘⦋𝐺 / 𝑔⦌𝑋) ≤ (𝑅‘𝐺)) |
44 | 1, 2, 32, 4, 5, 6,
43 | syl132anc 1387 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝑅‘⦋𝐺 / 𝑔⦌𝑋) ≤ (𝑅‘𝐺)) |
45 | 7, 12, 13, 14 | trlcl 38178 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇) → (𝑅‘⦋𝐺 / 𝑔⦌𝑋) ∈ 𝐵) |
46 | 1, 34, 45 | syl2anc 584 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝑅‘⦋𝐺 / 𝑔⦌𝑋) ∈ 𝐵) |
47 | | simp13l 1287 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → 𝐺 ∈ 𝑇) |
48 | | simp13r 1288 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → 𝐺 ≠ ( I ↾ 𝐵)) |
49 | 7, 11, 12, 13, 14 | trlnidat 38187 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) → (𝑅‘𝐺) ∈ 𝐴) |
50 | 1, 47, 48, 49 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝑅‘𝐺) ∈ 𝐴) |
51 | 7, 11 | atbase 37303 |
. . . . 5
⊢ ((𝑅‘𝐺) ∈ 𝐴 → (𝑅‘𝐺) ∈ 𝐵) |
52 | 50, 51 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝑅‘𝐺) ∈ 𝐵) |
53 | 8, 11, 12, 13 | ltrnat 38154 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ⦋𝐼 / 𝑔⦌𝑋 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∈ 𝐴) |
54 | 1, 23, 35, 53 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∈ 𝐴) |
55 | 7, 11 | atbase 37303 |
. . . . 5
⊢
((⦋𝐼 /
𝑔⦌𝑋‘𝑃) ∈ 𝐴 → (⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∈ 𝐵) |
56 | 54, 55 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∈ 𝐵) |
57 | 7, 8, 9 | latjlej2 18172 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ ((𝑅‘⦋𝐺 / 𝑔⦌𝑋) ∈ 𝐵 ∧ (𝑅‘𝐺) ∈ 𝐵 ∧ (⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∈ 𝐵)) → ((𝑅‘⦋𝐺 / 𝑔⦌𝑋) ≤ (𝑅‘𝐺) → ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋)) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺)))) |
58 | 21, 46, 52, 56, 57 | syl13anc 1371 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ((𝑅‘⦋𝐺 / 𝑔⦌𝑋) ≤ (𝑅‘𝐺) → ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋)) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺)))) |
59 | 44, 58 | mpd 15 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋)) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺))) |
60 | 7, 9 | latjcl 18157 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧
(⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∈ 𝐵 ∧ (𝑅‘⦋𝐼 / 𝑔⦌𝑋) ∈ 𝐵) → ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋)) ∈ 𝐵) |
61 | 21, 39, 25, 60 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋)) ∈ 𝐵) |
62 | 7, 9, 11 | hlatjcl 37381 |
. . . 4
⊢ ((𝐾 ∈ HL ∧
(⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∈ 𝐴 ∧ (𝑅‘𝐼) ∈ 𝐴) → ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐼)) ∈ 𝐵) |
63 | 20, 37, 29, 62 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐼)) ∈ 𝐵) |
64 | 7, 9 | latjcl 18157 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧
(⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∈ 𝐵 ∧ (𝑅‘⦋𝐺 / 𝑔⦌𝑋) ∈ 𝐵) → ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋)) ∈ 𝐵) |
65 | 21, 56, 46, 64 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋)) ∈ 𝐵) |
66 | 7, 9, 11 | hlatjcl 37381 |
. . . 4
⊢ ((𝐾 ∈ HL ∧
(⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∈ 𝐴 ∧ (𝑅‘𝐺) ∈ 𝐴) → ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺)) ∈ 𝐵) |
67 | 20, 54, 50, 66 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺)) ∈ 𝐵) |
68 | 7, 8, 10 | latmlem12 18189 |
. . 3
⊢ ((𝐾 ∈ Lat ∧
(((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋)) ∈ 𝐵 ∧ ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐼)) ∈ 𝐵) ∧ (((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋)) ∈ 𝐵 ∧ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺)) ∈ 𝐵)) → ((((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋)) ≤ ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐼)) ∧ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋)) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺))) → (((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋)) ∧ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋))) ≤ (((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐼)) ∧ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺))))) |
69 | 21, 61, 63, 65, 67, 68 | syl122anc 1378 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ((((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋)) ≤ ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐼)) ∧ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋)) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺))) → (((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋)) ∧ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋))) ≤ (((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐼)) ∧ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺))))) |
70 | 42, 59, 69 | mp2and 696 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋)) ∧ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋))) ≤ (((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐼)) ∧ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺)))) |