| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl33 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl33 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
| 2 | 1 | 3ad2antl3 1188 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: nosupres 27635 noinfres 27650 ax5seglem3a 28893 ax5seg 28901 numclwwlk1lem2foa 30316 br8d 32571 br8 35731 cgrextend 35984 segconeq 35986 trisegint 36004 ifscgr 36020 cgrsub 36021 btwnxfr 36032 seglecgr12im 36086 segletr 36090 atbtwn 39428 4atlem10b 39587 4atlem11 39591 4atlem12 39594 2lplnj 39602 paddasslem4 39805 paddasslem7 39808 pmodlem1 39828 4atex2 40059 trlval3 40169 arglem1N 40172 cdleme0moN 40207 cdleme20 40306 cdleme21j 40318 cdleme28c 40354 cdleme38n 40446 cdlemg6c 40602 cdlemg6 40605 cdlemg7N 40608 cdlemg16 40639 cdlemg16ALTN 40640 cdlemg16zz 40642 cdlemg20 40667 cdlemg22 40669 cdlemg37 40671 cdlemg31d 40682 cdlemg29 40687 cdlemg33b 40689 cdlemg33 40693 cdlemg46 40717 cdlemk25-3 40886 |
| Copyright terms: Public domain | W3C validator |