| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl33 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl33 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
| 2 | 1 | 3ad2antl3 1188 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: nosupres 27671 noinfres 27686 ax5seglem3a 28909 ax5seg 28917 numclwwlk1lem2foa 30335 br8d 32590 br8 35773 cgrextend 36026 segconeq 36028 trisegint 36046 ifscgr 36062 cgrsub 36063 btwnxfr 36074 seglecgr12im 36128 segletr 36132 atbtwn 39465 4atlem10b 39624 4atlem11 39628 4atlem12 39631 2lplnj 39639 paddasslem4 39842 paddasslem7 39845 pmodlem1 39865 4atex2 40096 trlval3 40206 arglem1N 40209 cdleme0moN 40244 cdleme20 40343 cdleme21j 40355 cdleme28c 40391 cdleme38n 40483 cdlemg6c 40639 cdlemg6 40642 cdlemg7N 40645 cdlemg16 40676 cdlemg16ALTN 40677 cdlemg16zz 40679 cdlemg20 40704 cdlemg22 40706 cdlemg37 40708 cdlemg31d 40719 cdlemg29 40724 cdlemg33b 40726 cdlemg33 40730 cdlemg46 40754 cdlemk25-3 40923 |
| Copyright terms: Public domain | W3C validator |