| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl33 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl33 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
| 2 | 1 | 3ad2antl3 1188 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: nosupres 27626 noinfres 27641 ax5seglem3a 28864 ax5seg 28872 numclwwlk1lem2foa 30290 br8d 32545 br8 35750 cgrextend 36003 segconeq 36005 trisegint 36023 ifscgr 36039 cgrsub 36040 btwnxfr 36051 seglecgr12im 36105 segletr 36109 atbtwn 39447 4atlem10b 39606 4atlem11 39610 4atlem12 39613 2lplnj 39621 paddasslem4 39824 paddasslem7 39827 pmodlem1 39847 4atex2 40078 trlval3 40188 arglem1N 40191 cdleme0moN 40226 cdleme20 40325 cdleme21j 40337 cdleme28c 40373 cdleme38n 40465 cdlemg6c 40621 cdlemg6 40624 cdlemg7N 40627 cdlemg16 40658 cdlemg16ALTN 40659 cdlemg16zz 40661 cdlemg20 40686 cdlemg22 40688 cdlemg37 40690 cdlemg31d 40701 cdlemg29 40706 cdlemg33b 40708 cdlemg33 40712 cdlemg46 40736 cdlemk25-3 40905 |
| Copyright terms: Public domain | W3C validator |