![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl33 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl33 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1194 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
2 | 1 | 3ad2antl3 1188 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: nosupres 27210 noinfres 27225 ax5seglem3a 28219 ax5seg 28227 numclwwlk1lem2foa 29638 br8d 31870 br8 34757 cgrextend 35011 segconeq 35013 trisegint 35031 ifscgr 35047 cgrsub 35048 btwnxfr 35059 seglecgr12im 35113 segletr 35117 atbtwn 38365 4atlem10b 38524 4atlem11 38528 4atlem12 38531 2lplnj 38539 paddasslem4 38742 paddasslem7 38745 pmodlem1 38765 4atex2 38996 trlval3 39106 arglem1N 39109 cdleme0moN 39144 cdleme20 39243 cdleme21j 39255 cdleme28c 39291 cdleme38n 39383 cdlemg6c 39539 cdlemg6 39542 cdlemg7N 39545 cdlemg16 39576 cdlemg16ALTN 39577 cdlemg16zz 39579 cdlemg20 39604 cdlemg22 39606 cdlemg37 39608 cdlemg31d 39619 cdlemg29 39624 cdlemg33b 39626 cdlemg33 39630 cdlemg46 39654 cdlemk25-3 39823 |
Copyright terms: Public domain | W3C validator |