| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl33 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl33 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
| 2 | 1 | 3ad2antl3 1188 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: nosupres 27649 noinfres 27664 ax5seglem3a 28912 ax5seg 28920 numclwwlk1lem2foa 30338 br8d 32595 br8 35823 cgrextend 36075 segconeq 36077 trisegint 36095 ifscgr 36111 cgrsub 36112 btwnxfr 36123 seglecgr12im 36177 segletr 36181 atbtwn 39568 4atlem10b 39727 4atlem11 39731 4atlem12 39734 2lplnj 39742 paddasslem4 39945 paddasslem7 39948 pmodlem1 39968 4atex2 40199 trlval3 40309 arglem1N 40312 cdleme0moN 40347 cdleme20 40446 cdleme21j 40458 cdleme28c 40494 cdleme38n 40586 cdlemg6c 40742 cdlemg6 40745 cdlemg7N 40748 cdlemg16 40779 cdlemg16ALTN 40780 cdlemg16zz 40782 cdlemg20 40807 cdlemg22 40809 cdlemg37 40811 cdlemg31d 40822 cdlemg29 40827 cdlemg33b 40829 cdlemg33 40833 cdlemg46 40857 cdlemk25-3 41026 |
| Copyright terms: Public domain | W3C validator |