Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpl33 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl33 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
2 | 1 | 3ad2antl3 1186 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: ax5seglem3a 27308 ax5seg 27316 numclwwlk1lem2foa 28726 br8d 30958 br8 33731 nosupres 33918 noinfres 33933 cgrextend 34318 segconeq 34320 trisegint 34338 ifscgr 34354 cgrsub 34355 btwnxfr 34366 seglecgr12im 34420 segletr 34424 atbtwn 37468 4atlem10b 37627 4atlem11 37631 4atlem12 37634 2lplnj 37642 paddasslem4 37845 paddasslem7 37848 pmodlem1 37868 4atex2 38099 trlval3 38209 arglem1N 38212 cdleme0moN 38247 cdleme20 38346 cdleme21j 38358 cdleme28c 38394 cdleme38n 38486 cdlemg6c 38642 cdlemg6 38645 cdlemg7N 38648 cdlemg16 38679 cdlemg16ALTN 38680 cdlemg16zz 38682 cdlemg20 38707 cdlemg22 38709 cdlemg37 38711 cdlemg31d 38722 cdlemg29 38727 cdlemg33b 38729 cdlemg33 38733 cdlemg46 38757 cdlemk25-3 38926 |
Copyright terms: Public domain | W3C validator |