Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg33b Structured version   Visualization version   GIF version

Theorem cdlemg33b 40091
Description: TODO: Fix comment. (Contributed by NM, 30-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l ≀ = (leβ€˜πΎ)
cdlemg12.j ∨ = (joinβ€˜πΎ)
cdlemg12.m ∧ = (meetβ€˜πΎ)
cdlemg12.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg12.h 𝐻 = (LHypβ€˜πΎ)
cdlemg12.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemg12b.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemg31.n 𝑁 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (π‘…β€˜πΉ)))
cdlemg33.o 𝑂 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (π‘…β€˜πΊ)))
Assertion
Ref Expression
cdlemg33b ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣))))
Distinct variable groups:   𝐴,π‘Ÿ   𝐺,π‘Ÿ   ∨ ,π‘Ÿ   ≀ ,π‘Ÿ   𝑃,π‘Ÿ   𝑄,π‘Ÿ   π‘Š,π‘Ÿ   𝐹,π‘Ÿ   𝑧,𝐴   𝑧,𝐹,π‘Ÿ   𝐻,π‘Ÿ,𝑧   𝑧, ∨   𝐾,π‘Ÿ,𝑧   𝑧, ≀   𝑁,π‘Ÿ,𝑧   𝑧,𝑃   𝑧,𝑄   𝑧,𝑅   𝑧,𝑇   𝑧,π‘Š   𝑧,𝑣,π‘Ÿ   𝑧,𝐺   𝑧,𝑂,π‘Ÿ
Allowed substitution hints:   𝐴(𝑣)   𝑃(𝑣)   𝑄(𝑣)   𝑅(𝑣,π‘Ÿ)   𝑇(𝑣,π‘Ÿ)   𝐹(𝑣)   𝐺(𝑣)   𝐻(𝑣)   ∨ (𝑣)   𝐾(𝑣)   ≀ (𝑣)   ∧ (𝑧,𝑣,π‘Ÿ)   𝑁(𝑣)   𝑂(𝑣)   π‘Š(𝑣)

Proof of Theorem cdlemg33b
StepHypRef Expression
1 df-3an 1086 . . . . 5 ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣)) ↔ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣)))
2 neeq2 2998 . . . . . . . 8 (𝑁 = 𝑂 β†’ (𝑧 β‰  𝑁 ↔ 𝑧 β‰  𝑂))
32anbi2d 628 . . . . . . 7 (𝑁 = 𝑂 β†’ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑁) ↔ (𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂)))
4 anidm 564 . . . . . . 7 ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑁) ↔ 𝑧 β‰  𝑁)
53, 4bitr3di 286 . . . . . 6 (𝑁 = 𝑂 β†’ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ↔ 𝑧 β‰  𝑁))
65anbi1d 629 . . . . 5 (𝑁 = 𝑂 β†’ (((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣)) ↔ (𝑧 β‰  𝑁 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣))))
71, 6bitrid 283 . . . 4 (𝑁 = 𝑂 β†’ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣)) ↔ (𝑧 β‰  𝑁 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣))))
87anbi2d 628 . . 3 (𝑁 = 𝑂 β†’ ((Β¬ 𝑧 ≀ π‘Š ∧ (𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣))) ↔ (Β¬ 𝑧 ≀ π‘Š ∧ (𝑧 β‰  𝑁 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣)))))
98rexbidv 3172 . 2 (𝑁 = 𝑂 β†’ (βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣))) ↔ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑧 β‰  𝑁 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣)))))
10 simpl1 1188 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) ∧ 𝑁 β‰  𝑂) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
11 simpl2 1189 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) ∧ 𝑁 β‰  𝑂) β†’ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)))
12 simpl31 1251 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) ∧ 𝑁 β‰  𝑂) β†’ 𝑃 β‰  𝑄)
13 simpr 484 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) ∧ 𝑁 β‰  𝑂) β†’ 𝑁 β‰  𝑂)
1412, 13jca 511 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) ∧ 𝑁 β‰  𝑂) β†’ (𝑃 β‰  𝑄 ∧ 𝑁 β‰  𝑂))
15 simpl32 1252 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) ∧ 𝑁 β‰  𝑂) β†’ 𝑣 β‰  (π‘…β€˜πΉ))
16 simpl33 1253 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) ∧ 𝑁 β‰  𝑂) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))
17 cdlemg12.l . . . 4 ≀ = (leβ€˜πΎ)
18 cdlemg12.j . . . 4 ∨ = (joinβ€˜πΎ)
19 cdlemg12.m . . . 4 ∧ = (meetβ€˜πΎ)
20 cdlemg12.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
21 cdlemg12.h . . . 4 𝐻 = (LHypβ€˜πΎ)
22 cdlemg12.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
23 cdlemg12b.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
24 cdlemg31.n . . . 4 𝑁 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (π‘…β€˜πΉ)))
25 cdlemg33.o . . . 4 𝑂 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (π‘…β€˜πΊ)))
2617, 18, 19, 20, 21, 22, 23, 24, 25cdlemg33a 40090 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑁 β‰  𝑂) ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣))))
2710, 11, 14, 15, 16, 26syl113anc 1379 . 2 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) ∧ 𝑁 β‰  𝑂) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣))))
28 simp21 1203 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š))
29 simp22l 1289 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑁 ∈ 𝐴)
30 simp23l 1291 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐹 ∈ 𝑇)
3128, 29, 303jca 1125 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ 𝑁 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇))
3217, 18, 19, 20, 21, 22, 23, 24cdlemg33b0 40085 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ 𝑁 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑧 β‰  𝑁 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣))))
3331, 32syld3an2 1408 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑧 β‰  𝑁 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣))))
349, 27, 33pm2.61ne 3021 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆƒwrex 3064   class class class wbr 5141  β€˜cfv 6537  (class class class)co 7405  lecple 17213  joincjn 18276  meetcmee 18277  Atomscatm 38646  HLchlt 38733  LHypclh 39368  LTrncltrn 39485  trLctrl 39542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-map 8824  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-llines 38882  df-lplanes 38883  df-psubsp 38887  df-pmap 38888  df-padd 39180  df-lhyp 39372  df-laut 39373  df-ldil 39488  df-ltrn 39489  df-trl 39543
This theorem is referenced by:  cdlemg33  40095
  Copyright terms: Public domain W3C validator