Proof of Theorem cdlemg33b
| Step | Hyp | Ref
| Expression |
| 1 | | df-3an 1089 |
. . . . 5
⊢ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ∧ 𝑧 ≤ (𝑃 ∨ 𝑣)) ↔ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣))) |
| 2 | | neeq2 3004 |
. . . . . . . 8
⊢ (𝑁 = 𝑂 → (𝑧 ≠ 𝑁 ↔ 𝑧 ≠ 𝑂)) |
| 3 | 2 | anbi2d 630 |
. . . . . . 7
⊢ (𝑁 = 𝑂 → ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑁) ↔ (𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂))) |
| 4 | | anidm 564 |
. . . . . . 7
⊢ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑁) ↔ 𝑧 ≠ 𝑁) |
| 5 | 3, 4 | bitr3di 286 |
. . . . . 6
⊢ (𝑁 = 𝑂 → ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ↔ 𝑧 ≠ 𝑁)) |
| 6 | 5 | anbi1d 631 |
. . . . 5
⊢ (𝑁 = 𝑂 → (((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣)) ↔ (𝑧 ≠ 𝑁 ∧ 𝑧 ≤ (𝑃 ∨ 𝑣)))) |
| 7 | 1, 6 | bitrid 283 |
. . . 4
⊢ (𝑁 = 𝑂 → ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ∧ 𝑧 ≤ (𝑃 ∨ 𝑣)) ↔ (𝑧 ≠ 𝑁 ∧ 𝑧 ≤ (𝑃 ∨ 𝑣)))) |
| 8 | 7 | anbi2d 630 |
. . 3
⊢ (𝑁 = 𝑂 → ((¬ 𝑧 ≤ 𝑊 ∧ (𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ∧ 𝑧 ≤ (𝑃 ∨ 𝑣))) ↔ (¬ 𝑧 ≤ 𝑊 ∧ (𝑧 ≠ 𝑁 ∧ 𝑧 ≤ (𝑃 ∨ 𝑣))))) |
| 9 | 8 | rexbidv 3179 |
. 2
⊢ (𝑁 = 𝑂 → (∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ∧ 𝑧 ≤ (𝑃 ∨ 𝑣))) ↔ ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑧 ≠ 𝑁 ∧ 𝑧 ≤ (𝑃 ∨ 𝑣))))) |
| 10 | | simpl1 1192 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑁 ≠ 𝑂) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
| 11 | | simpl2 1193 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑁 ≠ 𝑂) → ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇))) |
| 12 | | simpl31 1255 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑁 ≠ 𝑂) → 𝑃 ≠ 𝑄) |
| 13 | | simpr 484 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑁 ≠ 𝑂) → 𝑁 ≠ 𝑂) |
| 14 | 12, 13 | jca 511 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑁 ≠ 𝑂) → (𝑃 ≠ 𝑄 ∧ 𝑁 ≠ 𝑂)) |
| 15 | | simpl32 1256 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑁 ≠ 𝑂) → 𝑣 ≠ (𝑅‘𝐹)) |
| 16 | | simpl33 1257 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑁 ≠ 𝑂) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) |
| 17 | | cdlemg12.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 18 | | cdlemg12.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 19 | | cdlemg12.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
| 20 | | cdlemg12.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 21 | | cdlemg12.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 22 | | cdlemg12.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 23 | | cdlemg12b.r |
. . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 24 | | cdlemg31.n |
. . . 4
⊢ 𝑁 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) |
| 25 | | cdlemg33.o |
. . . 4
⊢ 𝑂 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐺))) |
| 26 | 17, 18, 19, 20, 21, 22, 23, 24, 25 | cdlemg33a 40708 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑁 ≠ 𝑂) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ∧ 𝑧 ≤ (𝑃 ∨ 𝑣)))) |
| 27 | 10, 11, 14, 15, 16, 26 | syl113anc 1384 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑁 ≠ 𝑂) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ∧ 𝑧 ≤ (𝑃 ∨ 𝑣)))) |
| 28 | | simp21 1207 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) |
| 29 | | simp22l 1293 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑁 ∈ 𝐴) |
| 30 | | simp23l 1295 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝐹 ∈ 𝑇) |
| 31 | 28, 29, 30 | 3jca 1129 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑁 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇)) |
| 32 | 17, 18, 19, 20, 21, 22, 23, 24 | cdlemg33b0 40703 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑁 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑧 ≠ 𝑁 ∧ 𝑧 ≤ (𝑃 ∨ 𝑣)))) |
| 33 | 31, 32 | syld3an2 1413 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑧 ≠ 𝑁 ∧ 𝑧 ≤ (𝑃 ∨ 𝑣)))) |
| 34 | 9, 27, 33 | pm2.61ne 3027 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ 𝑂 ∈ 𝐴) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ∧ 𝑧 ≤ (𝑃 ∨ 𝑣)))) |