Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  arglem1N Structured version   Visualization version   GIF version

Theorem arglem1N 38999
Description: Lemma for Desargues's law. Theorem 13.3 of [Crawley] p. 110, third and fourth lines from bottom. In these lemmas, 𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑈, 𝐶, 𝐷, 𝐸, 𝐹, and 𝐺 represent Crawley's a0, a1, a2, b0, b1, b2, c, z0, z1, z2, and p respectively. (Contributed by NM, 28-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
arglem1.j = (join‘𝐾)
arglem1.m = (meet‘𝐾)
arglem1.a 𝐴 = (Atoms‘𝐾)
arglem1.f 𝐹 = ((𝑃 𝑄) (𝑆 𝑇))
arglem1.g 𝐺 = ((𝑃 𝑆) (𝑄 𝑇))
Assertion
Ref Expression
arglem1N ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝐹𝐴)

Proof of Theorem arglem1N
StepHypRef Expression
1 arglem1.f . 2 𝐹 = ((𝑃 𝑄) (𝑆 𝑇))
2 simpl11 1249 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝐾 ∈ HL)
32hllatd 38172 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝐾 ∈ Lat)
4 simpl12 1250 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑃𝐴)
5 eqid 2733 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
6 arglem1.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
75, 6atbase 38097 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
84, 7syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑃 ∈ (Base‘𝐾))
9 simpl13 1251 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑄𝐴)
105, 6atbase 38097 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
119, 10syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑄 ∈ (Base‘𝐾))
12 simpl21 1252 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑆𝐴)
135, 6atbase 38097 . . . . . 6 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1412, 13syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑆 ∈ (Base‘𝐾))
15 simpl22 1253 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑇𝐴)
165, 6atbase 38097 . . . . . 6 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
1715, 16syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑇 ∈ (Base‘𝐾))
18 arglem1.j . . . . . 6 = (join‘𝐾)
195, 18latj4 18438 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾))) → ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑃 𝑆) (𝑄 𝑇)))
203, 8, 11, 14, 17, 19syl122anc 1380 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑃 𝑆) (𝑄 𝑇)))
21 arglem1.g . . . . . 6 𝐺 = ((𝑃 𝑆) (𝑄 𝑇))
22 simpr 486 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝐺𝐴)
2321, 22eqeltrrid 2839 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ 𝐴)
24 simpl31 1255 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑃𝑆)
25 eqid 2733 . . . . . . . 8 (LLines‘𝐾) = (LLines‘𝐾)
2618, 6, 25llni2 38321 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) ∧ 𝑃𝑆) → (𝑃 𝑆) ∈ (LLines‘𝐾))
272, 4, 12, 24, 26syl31anc 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → (𝑃 𝑆) ∈ (LLines‘𝐾))
28 simpl32 1256 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑄𝑇)
2918, 6, 25llni2 38321 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) ∧ 𝑄𝑇) → (𝑄 𝑇) ∈ (LLines‘𝐾))
302, 9, 15, 28, 29syl31anc 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → (𝑄 𝑇) ∈ (LLines‘𝐾))
31 arglem1.m . . . . . . 7 = (meet‘𝐾)
32 eqid 2733 . . . . . . 7 (LPlanes‘𝐾) = (LPlanes‘𝐾)
3318, 31, 6, 25, 322llnmj 38369 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 𝑇) ∈ (LLines‘𝐾)) → (((𝑃 𝑆) (𝑄 𝑇)) ∈ 𝐴 ↔ ((𝑃 𝑆) (𝑄 𝑇)) ∈ (LPlanes‘𝐾)))
342, 27, 30, 33syl3anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → (((𝑃 𝑆) (𝑄 𝑇)) ∈ 𝐴 ↔ ((𝑃 𝑆) (𝑄 𝑇)) ∈ (LPlanes‘𝐾)))
3523, 34mpbid 231 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ (LPlanes‘𝐾))
3620, 35eqeltrd 2834 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → ((𝑃 𝑄) (𝑆 𝑇)) ∈ (LPlanes‘𝐾))
37 simpl23 1254 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑃𝑄)
3818, 6, 25llni2 38321 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (LLines‘𝐾))
392, 4, 9, 37, 38syl31anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → (𝑃 𝑄) ∈ (LLines‘𝐾))
40 simpl33 1257 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑆𝑇)
4118, 6, 25llni2 38321 . . . . 5 (((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) ∧ 𝑆𝑇) → (𝑆 𝑇) ∈ (LLines‘𝐾))
422, 12, 15, 40, 41syl31anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → (𝑆 𝑇) ∈ (LLines‘𝐾))
4318, 31, 6, 25, 322llnmj 38369 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (LLines‘𝐾) ∧ (𝑆 𝑇) ∈ (LLines‘𝐾)) → (((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝐴 ↔ ((𝑃 𝑄) (𝑆 𝑇)) ∈ (LPlanes‘𝐾)))
442, 39, 42, 43syl3anc 1372 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → (((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝐴 ↔ ((𝑃 𝑄) (𝑆 𝑇)) ∈ (LPlanes‘𝐾)))
4536, 44mpbird 257 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → ((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝐴)
461, 45eqeltrid 2838 1 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  cfv 6540  (class class class)co 7404  Basecbs 17140  joincjn 18260  meetcmee 18261  Latclat 18380  Atomscatm 38071  HLchlt 38158  LLinesclln 38300  LPlanesclpl 38301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-clat 18448  df-oposet 37984  df-ol 37986  df-oml 37987  df-covers 38074  df-ats 38075  df-atl 38106  df-cvlat 38130  df-hlat 38159  df-llines 38307  df-lplanes 38308
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator