Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  arglem1N Structured version   Visualization version   GIF version

Theorem arglem1N 38653
Description: Lemma for Desargues's law. Theorem 13.3 of [Crawley] p. 110, third and fourth lines from bottom. In these lemmas, 𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑈, 𝐶, 𝐷, 𝐸, 𝐹, and 𝐺 represent Crawley's a0, a1, a2, b0, b1, b2, c, z0, z1, z2, and p respectively. (Contributed by NM, 28-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
arglem1.j = (join‘𝐾)
arglem1.m = (meet‘𝐾)
arglem1.a 𝐴 = (Atoms‘𝐾)
arglem1.f 𝐹 = ((𝑃 𝑄) (𝑆 𝑇))
arglem1.g 𝐺 = ((𝑃 𝑆) (𝑄 𝑇))
Assertion
Ref Expression
arglem1N ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝐹𝐴)

Proof of Theorem arglem1N
StepHypRef Expression
1 arglem1.f . 2 𝐹 = ((𝑃 𝑄) (𝑆 𝑇))
2 simpl11 1248 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝐾 ∈ HL)
32hllatd 37826 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝐾 ∈ Lat)
4 simpl12 1249 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑃𝐴)
5 eqid 2736 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
6 arglem1.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
75, 6atbase 37751 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
84, 7syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑃 ∈ (Base‘𝐾))
9 simpl13 1250 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑄𝐴)
105, 6atbase 37751 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
119, 10syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑄 ∈ (Base‘𝐾))
12 simpl21 1251 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑆𝐴)
135, 6atbase 37751 . . . . . 6 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1412, 13syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑆 ∈ (Base‘𝐾))
15 simpl22 1252 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑇𝐴)
165, 6atbase 37751 . . . . . 6 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
1715, 16syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑇 ∈ (Base‘𝐾))
18 arglem1.j . . . . . 6 = (join‘𝐾)
195, 18latj4 18378 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾))) → ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑃 𝑆) (𝑄 𝑇)))
203, 8, 11, 14, 17, 19syl122anc 1379 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑃 𝑆) (𝑄 𝑇)))
21 arglem1.g . . . . . 6 𝐺 = ((𝑃 𝑆) (𝑄 𝑇))
22 simpr 485 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝐺𝐴)
2321, 22eqeltrrid 2843 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ 𝐴)
24 simpl31 1254 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑃𝑆)
25 eqid 2736 . . . . . . . 8 (LLines‘𝐾) = (LLines‘𝐾)
2618, 6, 25llni2 37975 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) ∧ 𝑃𝑆) → (𝑃 𝑆) ∈ (LLines‘𝐾))
272, 4, 12, 24, 26syl31anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → (𝑃 𝑆) ∈ (LLines‘𝐾))
28 simpl32 1255 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑄𝑇)
2918, 6, 25llni2 37975 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) ∧ 𝑄𝑇) → (𝑄 𝑇) ∈ (LLines‘𝐾))
302, 9, 15, 28, 29syl31anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → (𝑄 𝑇) ∈ (LLines‘𝐾))
31 arglem1.m . . . . . . 7 = (meet‘𝐾)
32 eqid 2736 . . . . . . 7 (LPlanes‘𝐾) = (LPlanes‘𝐾)
3318, 31, 6, 25, 322llnmj 38023 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 𝑇) ∈ (LLines‘𝐾)) → (((𝑃 𝑆) (𝑄 𝑇)) ∈ 𝐴 ↔ ((𝑃 𝑆) (𝑄 𝑇)) ∈ (LPlanes‘𝐾)))
342, 27, 30, 33syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → (((𝑃 𝑆) (𝑄 𝑇)) ∈ 𝐴 ↔ ((𝑃 𝑆) (𝑄 𝑇)) ∈ (LPlanes‘𝐾)))
3523, 34mpbid 231 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ (LPlanes‘𝐾))
3620, 35eqeltrd 2838 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → ((𝑃 𝑄) (𝑆 𝑇)) ∈ (LPlanes‘𝐾))
37 simpl23 1253 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑃𝑄)
3818, 6, 25llni2 37975 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (LLines‘𝐾))
392, 4, 9, 37, 38syl31anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → (𝑃 𝑄) ∈ (LLines‘𝐾))
40 simpl33 1256 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑆𝑇)
4118, 6, 25llni2 37975 . . . . 5 (((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) ∧ 𝑆𝑇) → (𝑆 𝑇) ∈ (LLines‘𝐾))
422, 12, 15, 40, 41syl31anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → (𝑆 𝑇) ∈ (LLines‘𝐾))
4318, 31, 6, 25, 322llnmj 38023 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (LLines‘𝐾) ∧ (𝑆 𝑇) ∈ (LLines‘𝐾)) → (((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝐴 ↔ ((𝑃 𝑄) (𝑆 𝑇)) ∈ (LPlanes‘𝐾)))
442, 39, 42, 43syl3anc 1371 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → (((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝐴 ↔ ((𝑃 𝑄) (𝑆 𝑇)) ∈ (LPlanes‘𝐾)))
4536, 44mpbird 256 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → ((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝐴)
461, 45eqeltrid 2842 1 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  cfv 6496  (class class class)co 7357  Basecbs 17083  joincjn 18200  meetcmee 18201  Latclat 18320  Atomscatm 37725  HLchlt 37812  LLinesclln 37954  LPlanesclpl 37955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator