Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atbtwn Structured version   Visualization version   GIF version

Theorem atbtwn 35467
Description: Property of a 3rd atom 𝑅 on a line 𝑃 𝑄 intersecting element 𝑋 at 𝑃. (Contributed by NM, 30-Jul-2012.)
Hypotheses
Ref Expression
atbtwn.b 𝐵 = (Base‘𝐾)
atbtwn.l = (le‘𝐾)
atbtwn.j = (join‘𝐾)
atbtwn.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atbtwn (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅𝑃 ↔ ¬ 𝑅 𝑋))

Proof of Theorem atbtwn
StepHypRef Expression
1 simpl33 1346 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑅 (𝑃 𝑄))
2 simpr 478 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑅 𝑋)
3 simpl11 1330 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝐾 ∈ HL)
43hllatd 35385 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝐾 ∈ Lat)
5 simpl2l 1298 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑅𝐴)
6 atbtwn.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
7 atbtwn.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
86, 7atbase 35310 . . . . . . . . 9 (𝑅𝐴𝑅𝐵)
95, 8syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑅𝐵)
10 simpl1 1243 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
11 atbtwn.j . . . . . . . . . 10 = (join‘𝐾)
126, 11, 7hlatjcl 35388 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ 𝐵)
1310, 12syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → (𝑃 𝑄) ∈ 𝐵)
14 simpl2r 1300 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑋𝐵)
15 atbtwn.l . . . . . . . . 9 = (le‘𝐾)
16 eqid 2799 . . . . . . . . 9 (meet‘𝐾) = (meet‘𝐾)
176, 15, 16latlem12 17393 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑅𝐵 ∧ (𝑃 𝑄) ∈ 𝐵𝑋𝐵)) → ((𝑅 (𝑃 𝑄) ∧ 𝑅 𝑋) ↔ 𝑅 ((𝑃 𝑄)(meet‘𝐾)𝑋)))
184, 9, 13, 14, 17syl13anc 1492 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → ((𝑅 (𝑃 𝑄) ∧ 𝑅 𝑋) ↔ 𝑅 ((𝑃 𝑄)(meet‘𝐾)𝑋)))
191, 2, 18mpbi2and 704 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑅 ((𝑃 𝑄)(meet‘𝐾)𝑋))
20 simpl12 1332 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑃𝐴)
21 simpl13 1334 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑄𝐴)
22 simpl31 1342 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑃 𝑋)
23 simpl32 1344 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → ¬ 𝑄 𝑋)
246, 15, 11, 16, 72atjm 35466 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋) = 𝑃)
253, 20, 21, 14, 22, 23, 24syl132anc 1508 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → ((𝑃 𝑄)(meet‘𝐾)𝑋) = 𝑃)
2619, 25breqtrd 4869 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑅 𝑃)
27 hlatl 35381 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
283, 27syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝐾 ∈ AtLat)
2915, 7atcmp 35332 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑅𝐴𝑃𝐴) → (𝑅 𝑃𝑅 = 𝑃))
3028, 5, 20, 29syl3anc 1491 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → (𝑅 𝑃𝑅 = 𝑃))
3126, 30mpbid 224 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑅 = 𝑃)
3231ex 402 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅 𝑋𝑅 = 𝑃))
3332necon3ad 2984 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅𝑃 → ¬ 𝑅 𝑋))
34 simp31 1267 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → 𝑃 𝑋)
35 nbrne2 4863 . . . . 5 ((𝑃 𝑋 ∧ ¬ 𝑅 𝑋) → 𝑃𝑅)
3635necomd 3026 . . . 4 ((𝑃 𝑋 ∧ ¬ 𝑅 𝑋) → 𝑅𝑃)
3736ex 402 . . 3 (𝑃 𝑋 → (¬ 𝑅 𝑋𝑅𝑃))
3834, 37syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (¬ 𝑅 𝑋𝑅𝑃))
3933, 38impbid 204 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅𝑃 ↔ ¬ 𝑅 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2971   class class class wbr 4843  cfv 6101  (class class class)co 6878  Basecbs 16184  lecple 16274  joincjn 17259  meetcmee 17260  Latclat 17360  Atomscatm 35284  AtLatcal 35285  HLchlt 35371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-proset 17243  df-poset 17261  df-plt 17273  df-lub 17289  df-glb 17290  df-join 17291  df-meet 17292  df-p0 17354  df-lat 17361  df-clat 17423  df-oposet 35197  df-ol 35199  df-oml 35200  df-covers 35287  df-ats 35288  df-atl 35319  df-cvlat 35343  df-hlat 35372
This theorem is referenced by:  atbtwnexOLDN  35468  atbtwnex  35469
  Copyright terms: Public domain W3C validator