Proof of Theorem atbtwn
Step | Hyp | Ref
| Expression |
1 | | simpl33 1254 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑅 ≤ (𝑃 ∨ 𝑄)) |
2 | | simpr 484 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑅 ≤ 𝑋) |
3 | | simpl11 1246 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝐾 ∈ HL) |
4 | 3 | hllatd 37305 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝐾 ∈ Lat) |
5 | | simpl2l 1224 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑅 ∈ 𝐴) |
6 | | atbtwn.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐾) |
7 | | atbtwn.a |
. . . . . . . . . 10
⊢ 𝐴 = (Atoms‘𝐾) |
8 | 6, 7 | atbase 37230 |
. . . . . . . . 9
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵) |
9 | 5, 8 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑅 ∈ 𝐵) |
10 | | simpl1 1189 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
11 | | atbtwn.j |
. . . . . . . . . 10
⊢ ∨ =
(join‘𝐾) |
12 | 6, 11, 7 | hlatjcl 37308 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
13 | 10, 12 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
14 | | simpl2r 1225 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑋 ∈ 𝐵) |
15 | | atbtwn.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
16 | | eqid 2738 |
. . . . . . . . 9
⊢
(meet‘𝐾) =
(meet‘𝐾) |
17 | 6, 15, 16 | latlem12 18099 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ 𝑋) ↔ 𝑅 ≤ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋))) |
18 | 4, 9, 13, 14, 17 | syl13anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ 𝑋) ↔ 𝑅 ≤ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋))) |
19 | 1, 2, 18 | mpbi2and 708 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑅 ≤ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋)) |
20 | | simpl12 1247 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑃 ∈ 𝐴) |
21 | | simpl13 1248 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑄 ∈ 𝐴) |
22 | | simpl31 1252 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑃 ≤ 𝑋) |
23 | | simpl32 1253 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → ¬ 𝑄 ≤ 𝑋) |
24 | 6, 15, 11, 16, 7 | 2atjm 37386 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) = 𝑃) |
25 | 3, 20, 21, 14, 22, 23, 24 | syl132anc 1386 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) = 𝑃) |
26 | 19, 25 | breqtrd 5096 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑅 ≤ 𝑃) |
27 | | hlatl 37301 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
28 | 3, 27 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝐾 ∈ AtLat) |
29 | 15, 7 | atcmp 37252 |
. . . . . 6
⊢ ((𝐾 ∈ AtLat ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑅 ≤ 𝑃 ↔ 𝑅 = 𝑃)) |
30 | 28, 5, 20, 29 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → (𝑅 ≤ 𝑃 ↔ 𝑅 = 𝑃)) |
31 | 26, 30 | mpbid 231 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑅 = 𝑃) |
32 | 31 | ex 412 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≤ 𝑋 → 𝑅 = 𝑃)) |
33 | 32 | necon3ad 2955 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≠ 𝑃 → ¬ 𝑅 ≤ 𝑋)) |
34 | | simp31 1207 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ≤ 𝑋) |
35 | | nbrne2 5090 |
. . . . 5
⊢ ((𝑃 ≤ 𝑋 ∧ ¬ 𝑅 ≤ 𝑋) → 𝑃 ≠ 𝑅) |
36 | 35 | necomd 2998 |
. . . 4
⊢ ((𝑃 ≤ 𝑋 ∧ ¬ 𝑅 ≤ 𝑋) → 𝑅 ≠ 𝑃) |
37 | 36 | ex 412 |
. . 3
⊢ (𝑃 ≤ 𝑋 → (¬ 𝑅 ≤ 𝑋 → 𝑅 ≠ 𝑃)) |
38 | 34, 37 | syl 17 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (¬ 𝑅 ≤ 𝑋 → 𝑅 ≠ 𝑃)) |
39 | 33, 38 | impbid 211 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≠ 𝑃 ↔ ¬ 𝑅 ≤ 𝑋)) |