Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atbtwn Structured version   Visualization version   GIF version

Theorem atbtwn 38828
Description: Property of a 3rd atom 𝑅 on a line 𝑃 ∨ 𝑄 intersecting element 𝑋 at 𝑃. (Contributed by NM, 30-Jul-2012.)
Hypotheses
Ref Expression
atbtwn.b 𝐡 = (Baseβ€˜πΎ)
atbtwn.l ≀ = (leβ€˜πΎ)
atbtwn.j ∨ = (joinβ€˜πΎ)
atbtwn.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
atbtwn (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 β‰  𝑃 ↔ Β¬ 𝑅 ≀ 𝑋))

Proof of Theorem atbtwn
StepHypRef Expression
1 simpl33 1253 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄))
2 simpr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑅 ≀ 𝑋)
3 simpl11 1245 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝐾 ∈ HL)
43hllatd 38745 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝐾 ∈ Lat)
5 simpl2l 1223 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑅 ∈ 𝐴)
6 atbtwn.b . . . . . . . . . 10 𝐡 = (Baseβ€˜πΎ)
7 atbtwn.a . . . . . . . . . 10 𝐴 = (Atomsβ€˜πΎ)
86, 7atbase 38670 . . . . . . . . 9 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ 𝐡)
95, 8syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑅 ∈ 𝐡)
10 simpl1 1188 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴))
11 atbtwn.j . . . . . . . . . 10 ∨ = (joinβ€˜πΎ)
126, 11, 7hlatjcl 38748 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ 𝐡)
1310, 12syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ (𝑃 ∨ 𝑄) ∈ 𝐡)
14 simpl2r 1224 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑋 ∈ 𝐡)
15 atbtwn.l . . . . . . . . 9 ≀ = (leβ€˜πΎ)
16 eqid 2726 . . . . . . . . 9 (meetβ€˜πΎ) = (meetβ€˜πΎ)
176, 15, 16latlem12 18429 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑅 ∈ 𝐡 ∧ (𝑃 ∨ 𝑄) ∈ 𝐡 ∧ 𝑋 ∈ 𝐡)) β†’ ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ 𝑋) ↔ 𝑅 ≀ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋)))
184, 9, 13, 14, 17syl13anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ 𝑋) ↔ 𝑅 ≀ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋)))
191, 2, 18mpbi2and 709 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑅 ≀ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋))
20 simpl12 1246 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑃 ∈ 𝐴)
21 simpl13 1247 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑄 ∈ 𝐴)
22 simpl31 1251 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑃 ≀ 𝑋)
23 simpl32 1252 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ Β¬ 𝑄 ≀ 𝑋)
246, 15, 11, 16, 72atjm 38827 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) = 𝑃)
253, 20, 21, 14, 22, 23, 24syl132anc 1385 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) = 𝑃)
2619, 25breqtrd 5167 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑅 ≀ 𝑃)
27 hlatl 38741 . . . . . . 7 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
283, 27syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝐾 ∈ AtLat)
2915, 7atcmp 38692 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) β†’ (𝑅 ≀ 𝑃 ↔ 𝑅 = 𝑃))
3028, 5, 20, 29syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ (𝑅 ≀ 𝑃 ↔ 𝑅 = 𝑃))
3126, 30mpbid 231 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑅 = 𝑃)
3231ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ≀ 𝑋 β†’ 𝑅 = 𝑃))
3332necon3ad 2947 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 β‰  𝑃 β†’ Β¬ 𝑅 ≀ 𝑋))
34 simp31 1206 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 ≀ 𝑋)
35 nbrne2 5161 . . . . 5 ((𝑃 ≀ 𝑋 ∧ Β¬ 𝑅 ≀ 𝑋) β†’ 𝑃 β‰  𝑅)
3635necomd 2990 . . . 4 ((𝑃 ≀ 𝑋 ∧ Β¬ 𝑅 ≀ 𝑋) β†’ 𝑅 β‰  𝑃)
3736ex 412 . . 3 (𝑃 ≀ 𝑋 β†’ (Β¬ 𝑅 ≀ 𝑋 β†’ 𝑅 β‰  𝑃))
3834, 37syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (Β¬ 𝑅 ≀ 𝑋 β†’ 𝑅 β‰  𝑃))
3933, 38impbid 211 1 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 β‰  𝑃 ↔ Β¬ 𝑅 ≀ 𝑋))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934   class class class wbr 5141  β€˜cfv 6536  (class class class)co 7404  Basecbs 17151  lecple 17211  joincjn 18274  meetcmee 18275  Latclat 18394  Atomscatm 38644  AtLatcal 38645  HLchlt 38731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-proset 18258  df-poset 18276  df-plt 18293  df-lub 18309  df-glb 18310  df-join 18311  df-meet 18312  df-p0 18388  df-lat 18395  df-clat 18462  df-oposet 38557  df-ol 38559  df-oml 38560  df-covers 38647  df-ats 38648  df-atl 38679  df-cvlat 38703  df-hlat 38732
This theorem is referenced by:  atbtwnexOLDN  38829  atbtwnex  38830
  Copyright terms: Public domain W3C validator