Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atbtwn Structured version   Visualization version   GIF version

Theorem atbtwn 38923
Description: Property of a 3rd atom 𝑅 on a line 𝑃 ∨ 𝑄 intersecting element 𝑋 at 𝑃. (Contributed by NM, 30-Jul-2012.)
Hypotheses
Ref Expression
atbtwn.b 𝐡 = (Baseβ€˜πΎ)
atbtwn.l ≀ = (leβ€˜πΎ)
atbtwn.j ∨ = (joinβ€˜πΎ)
atbtwn.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
atbtwn (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 β‰  𝑃 ↔ Β¬ 𝑅 ≀ 𝑋))

Proof of Theorem atbtwn
StepHypRef Expression
1 simpl33 1253 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄))
2 simpr 483 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑅 ≀ 𝑋)
3 simpl11 1245 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝐾 ∈ HL)
43hllatd 38840 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝐾 ∈ Lat)
5 simpl2l 1223 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑅 ∈ 𝐴)
6 atbtwn.b . . . . . . . . . 10 𝐡 = (Baseβ€˜πΎ)
7 atbtwn.a . . . . . . . . . 10 𝐴 = (Atomsβ€˜πΎ)
86, 7atbase 38765 . . . . . . . . 9 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ 𝐡)
95, 8syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑅 ∈ 𝐡)
10 simpl1 1188 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴))
11 atbtwn.j . . . . . . . . . 10 ∨ = (joinβ€˜πΎ)
126, 11, 7hlatjcl 38843 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ 𝐡)
1310, 12syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ (𝑃 ∨ 𝑄) ∈ 𝐡)
14 simpl2r 1224 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑋 ∈ 𝐡)
15 atbtwn.l . . . . . . . . 9 ≀ = (leβ€˜πΎ)
16 eqid 2727 . . . . . . . . 9 (meetβ€˜πΎ) = (meetβ€˜πΎ)
176, 15, 16latlem12 18463 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑅 ∈ 𝐡 ∧ (𝑃 ∨ 𝑄) ∈ 𝐡 ∧ 𝑋 ∈ 𝐡)) β†’ ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ 𝑋) ↔ 𝑅 ≀ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋)))
184, 9, 13, 14, 17syl13anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ 𝑋) ↔ 𝑅 ≀ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋)))
191, 2, 18mpbi2and 710 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑅 ≀ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋))
20 simpl12 1246 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑃 ∈ 𝐴)
21 simpl13 1247 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑄 ∈ 𝐴)
22 simpl31 1251 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑃 ≀ 𝑋)
23 simpl32 1252 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ Β¬ 𝑄 ≀ 𝑋)
246, 15, 11, 16, 72atjm 38922 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) = 𝑃)
253, 20, 21, 14, 22, 23, 24syl132anc 1385 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) = 𝑃)
2619, 25breqtrd 5176 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑅 ≀ 𝑃)
27 hlatl 38836 . . . . . . 7 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
283, 27syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝐾 ∈ AtLat)
2915, 7atcmp 38787 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) β†’ (𝑅 ≀ 𝑃 ↔ 𝑅 = 𝑃))
3028, 5, 20, 29syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ (𝑅 ≀ 𝑃 ↔ 𝑅 = 𝑃))
3126, 30mpbid 231 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≀ 𝑋) β†’ 𝑅 = 𝑃)
3231ex 411 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ≀ 𝑋 β†’ 𝑅 = 𝑃))
3332necon3ad 2949 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 β‰  𝑃 β†’ Β¬ 𝑅 ≀ 𝑋))
34 simp31 1206 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 ≀ 𝑋)
35 nbrne2 5170 . . . . 5 ((𝑃 ≀ 𝑋 ∧ Β¬ 𝑅 ≀ 𝑋) β†’ 𝑃 β‰  𝑅)
3635necomd 2992 . . . 4 ((𝑃 ≀ 𝑋 ∧ Β¬ 𝑅 ≀ 𝑋) β†’ 𝑅 β‰  𝑃)
3736ex 411 . . 3 (𝑃 ≀ 𝑋 β†’ (Β¬ 𝑅 ≀ 𝑋 β†’ 𝑅 β‰  𝑃))
3834, 37syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (Β¬ 𝑅 ≀ 𝑋 β†’ 𝑅 β‰  𝑃))
3933, 38impbid 211 1 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 β‰  𝑃 ↔ Β¬ 𝑅 ≀ 𝑋))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2936   class class class wbr 5150  β€˜cfv 6551  (class class class)co 7424  Basecbs 17185  lecple 17245  joincjn 18308  meetcmee 18309  Latclat 18428  Atomscatm 38739  AtLatcal 38740  HLchlt 38826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-proset 18292  df-poset 18310  df-plt 18327  df-lub 18343  df-glb 18344  df-join 18345  df-meet 18346  df-p0 18422  df-lat 18429  df-clat 18496  df-oposet 38652  df-ol 38654  df-oml 38655  df-covers 38742  df-ats 38743  df-atl 38774  df-cvlat 38798  df-hlat 38827
This theorem is referenced by:  atbtwnexOLDN  38924  atbtwnex  38925
  Copyright terms: Public domain W3C validator