Proof of Theorem atbtwn
| Step | Hyp | Ref
| Expression |
| 1 | | simpl33 1257 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑅 ≤ (𝑃 ∨ 𝑄)) |
| 2 | | simpr 484 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑅 ≤ 𝑋) |
| 3 | | simpl11 1249 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝐾 ∈ HL) |
| 4 | 3 | hllatd 39365 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝐾 ∈ Lat) |
| 5 | | simpl2l 1227 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑅 ∈ 𝐴) |
| 6 | | atbtwn.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐾) |
| 7 | | atbtwn.a |
. . . . . . . . . 10
⊢ 𝐴 = (Atoms‘𝐾) |
| 8 | 6, 7 | atbase 39290 |
. . . . . . . . 9
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵) |
| 9 | 5, 8 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑅 ∈ 𝐵) |
| 10 | | simpl1 1192 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
| 11 | | atbtwn.j |
. . . . . . . . . 10
⊢ ∨ =
(join‘𝐾) |
| 12 | 6, 11, 7 | hlatjcl 39368 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
| 13 | 10, 12 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
| 14 | | simpl2r 1228 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑋 ∈ 𝐵) |
| 15 | | atbtwn.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
| 16 | | eqid 2737 |
. . . . . . . . 9
⊢
(meet‘𝐾) =
(meet‘𝐾) |
| 17 | 6, 15, 16 | latlem12 18511 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ 𝑋) ↔ 𝑅 ≤ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋))) |
| 18 | 4, 9, 13, 14, 17 | syl13anc 1374 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ 𝑋) ↔ 𝑅 ≤ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋))) |
| 19 | 1, 2, 18 | mpbi2and 712 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑅 ≤ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋)) |
| 20 | | simpl12 1250 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑃 ∈ 𝐴) |
| 21 | | simpl13 1251 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑄 ∈ 𝐴) |
| 22 | | simpl31 1255 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑃 ≤ 𝑋) |
| 23 | | simpl32 1256 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → ¬ 𝑄 ≤ 𝑋) |
| 24 | 6, 15, 11, 16, 7 | 2atjm 39447 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) = 𝑃) |
| 25 | 3, 20, 21, 14, 22, 23, 24 | syl132anc 1390 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) = 𝑃) |
| 26 | 19, 25 | breqtrd 5169 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑅 ≤ 𝑃) |
| 27 | | hlatl 39361 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| 28 | 3, 27 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝐾 ∈ AtLat) |
| 29 | 15, 7 | atcmp 39312 |
. . . . . 6
⊢ ((𝐾 ∈ AtLat ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑅 ≤ 𝑃 ↔ 𝑅 = 𝑃)) |
| 30 | 28, 5, 20, 29 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → (𝑅 ≤ 𝑃 ↔ 𝑅 = 𝑃)) |
| 31 | 26, 30 | mpbid 232 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≤ 𝑋) → 𝑅 = 𝑃) |
| 32 | 31 | ex 412 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≤ 𝑋 → 𝑅 = 𝑃)) |
| 33 | 32 | necon3ad 2953 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≠ 𝑃 → ¬ 𝑅 ≤ 𝑋)) |
| 34 | | simp31 1210 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ≤ 𝑋) |
| 35 | | nbrne2 5163 |
. . . . 5
⊢ ((𝑃 ≤ 𝑋 ∧ ¬ 𝑅 ≤ 𝑋) → 𝑃 ≠ 𝑅) |
| 36 | 35 | necomd 2996 |
. . . 4
⊢ ((𝑃 ≤ 𝑋 ∧ ¬ 𝑅 ≤ 𝑋) → 𝑅 ≠ 𝑃) |
| 37 | 36 | ex 412 |
. . 3
⊢ (𝑃 ≤ 𝑋 → (¬ 𝑅 ≤ 𝑋 → 𝑅 ≠ 𝑃)) |
| 38 | 34, 37 | syl 17 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (¬ 𝑅 ≤ 𝑋 → 𝑅 ≠ 𝑃)) |
| 39 | 33, 38 | impbid 212 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≠ 𝑃 ↔ ¬ 𝑅 ≤ 𝑋)) |