Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atbtwn Structured version   Visualization version   GIF version

Theorem atbtwn 36586
Description: Property of a 3rd atom 𝑅 on a line 𝑃 𝑄 intersecting element 𝑋 at 𝑃. (Contributed by NM, 30-Jul-2012.)
Hypotheses
Ref Expression
atbtwn.b 𝐵 = (Base‘𝐾)
atbtwn.l = (le‘𝐾)
atbtwn.j = (join‘𝐾)
atbtwn.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atbtwn (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅𝑃 ↔ ¬ 𝑅 𝑋))

Proof of Theorem atbtwn
StepHypRef Expression
1 simpl33 1252 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑅 (𝑃 𝑄))
2 simpr 487 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑅 𝑋)
3 simpl11 1244 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝐾 ∈ HL)
43hllatd 36504 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝐾 ∈ Lat)
5 simpl2l 1222 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑅𝐴)
6 atbtwn.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
7 atbtwn.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
86, 7atbase 36429 . . . . . . . . 9 (𝑅𝐴𝑅𝐵)
95, 8syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑅𝐵)
10 simpl1 1187 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
11 atbtwn.j . . . . . . . . . 10 = (join‘𝐾)
126, 11, 7hlatjcl 36507 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ 𝐵)
1310, 12syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → (𝑃 𝑄) ∈ 𝐵)
14 simpl2r 1223 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑋𝐵)
15 atbtwn.l . . . . . . . . 9 = (le‘𝐾)
16 eqid 2824 . . . . . . . . 9 (meet‘𝐾) = (meet‘𝐾)
176, 15, 16latlem12 17691 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑅𝐵 ∧ (𝑃 𝑄) ∈ 𝐵𝑋𝐵)) → ((𝑅 (𝑃 𝑄) ∧ 𝑅 𝑋) ↔ 𝑅 ((𝑃 𝑄)(meet‘𝐾)𝑋)))
184, 9, 13, 14, 17syl13anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → ((𝑅 (𝑃 𝑄) ∧ 𝑅 𝑋) ↔ 𝑅 ((𝑃 𝑄)(meet‘𝐾)𝑋)))
191, 2, 18mpbi2and 710 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑅 ((𝑃 𝑄)(meet‘𝐾)𝑋))
20 simpl12 1245 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑃𝐴)
21 simpl13 1246 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑄𝐴)
22 simpl31 1250 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑃 𝑋)
23 simpl32 1251 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → ¬ 𝑄 𝑋)
246, 15, 11, 16, 72atjm 36585 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋) = 𝑃)
253, 20, 21, 14, 22, 23, 24syl132anc 1384 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → ((𝑃 𝑄)(meet‘𝐾)𝑋) = 𝑃)
2619, 25breqtrd 5095 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑅 𝑃)
27 hlatl 36500 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
283, 27syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝐾 ∈ AtLat)
2915, 7atcmp 36451 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑅𝐴𝑃𝐴) → (𝑅 𝑃𝑅 = 𝑃))
3028, 5, 20, 29syl3anc 1367 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → (𝑅 𝑃𝑅 = 𝑃))
3126, 30mpbid 234 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅 𝑋) → 𝑅 = 𝑃)
3231ex 415 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅 𝑋𝑅 = 𝑃))
3332necon3ad 3032 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅𝑃 → ¬ 𝑅 𝑋))
34 simp31 1205 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → 𝑃 𝑋)
35 nbrne2 5089 . . . . 5 ((𝑃 𝑋 ∧ ¬ 𝑅 𝑋) → 𝑃𝑅)
3635necomd 3074 . . . 4 ((𝑃 𝑋 ∧ ¬ 𝑅 𝑋) → 𝑅𝑃)
3736ex 415 . . 3 (𝑃 𝑋 → (¬ 𝑅 𝑋𝑅𝑃))
3834, 37syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (¬ 𝑅 𝑋𝑅𝑃))
3933, 38impbid 214 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅𝑃 ↔ ¬ 𝑅 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019   class class class wbr 5069  cfv 6358  (class class class)co 7159  Basecbs 16486  lecple 16575  joincjn 17557  meetcmee 17558  Latclat 17658  Atomscatm 36403  AtLatcal 36404  HLchlt 36490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-proset 17541  df-poset 17559  df-plt 17571  df-lub 17587  df-glb 17588  df-join 17589  df-meet 17590  df-p0 17652  df-lat 17659  df-clat 17721  df-oposet 36316  df-ol 36318  df-oml 36319  df-covers 36406  df-ats 36407  df-atl 36438  df-cvlat 36462  df-hlat 36491
This theorem is referenced by:  atbtwnexOLDN  36587  atbtwnex  36588
  Copyright terms: Public domain W3C validator