Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem12 Structured version   Visualization version   GIF version

Theorem 4atlem12 38471
Description: Lemma for 4at 38472. Combine all four possible cases. (Contributed by NM, 11-Jul-2012.)
Hypotheses
Ref Expression
4at.l ≀ = (leβ€˜πΎ)
4at.j ∨ = (joinβ€˜πΎ)
4at.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
4atlem12 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))

Proof of Theorem 4atlem12
StepHypRef Expression
1 simpl11 1248 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝐾 ∈ HL)
21hllatd 38222 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝐾 ∈ Lat)
3 simpl12 1249 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑃 ∈ 𝐴)
4 eqid 2732 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
5 4at.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
64, 5atbase 38147 . . . . . 6 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
73, 6syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
8 simpl13 1250 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑄 ∈ 𝐴)
94, 5atbase 38147 . . . . . 6 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
108, 9syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
11 simpl23 1253 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑇 ∈ 𝐴)
12 simpl31 1254 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ π‘ˆ ∈ 𝐴)
13 4at.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
144, 13, 5hlatjcl 38225 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) β†’ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
151, 11, 12, 14syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
16 simpl32 1255 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑉 ∈ 𝐴)
17 simpl33 1256 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ π‘Š ∈ 𝐴)
184, 13, 5hlatjcl 38225 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) β†’ (𝑉 ∨ π‘Š) ∈ (Baseβ€˜πΎ))
191, 16, 17, 18syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑉 ∨ π‘Š) ∈ (Baseβ€˜πΎ))
204, 13latjcl 18388 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ (𝑉 ∨ π‘Š) ∈ (Baseβ€˜πΎ)) β†’ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∈ (Baseβ€˜πΎ))
212, 15, 19, 20syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∈ (Baseβ€˜πΎ))
22 4at.l . . . . . 6 ≀ = (leβ€˜πΎ)
234, 22, 13latjle12 18399 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∈ (Baseβ€˜πΎ))) β†’ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ↔ (𝑃 ∨ 𝑄) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
242, 7, 10, 21, 23syl13anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ↔ (𝑃 ∨ 𝑄) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
25 simpl21 1251 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑅 ∈ 𝐴)
264, 5atbase 38147 . . . . . 6 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
2725, 26syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
28 simpl22 1252 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑆 ∈ 𝐴)
294, 5atbase 38147 . . . . . 6 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
3028, 29syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
314, 22, 13latjle12 18399 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ) ∧ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∈ (Baseβ€˜πΎ))) β†’ ((𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ↔ (𝑅 ∨ 𝑆) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
322, 27, 30, 21, 31syl13anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ↔ (𝑅 ∨ 𝑆) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
3324, 32anbi12d 631 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))) ↔ ((𝑃 ∨ 𝑄) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ (𝑅 ∨ 𝑆) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))))
34 simpl1 1191 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴))
354, 13, 5hlatjcl 38225 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
3634, 35syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
374, 13, 5hlatjcl 38225 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
381, 25, 28, 37syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
394, 22, 13latjle12 18399 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∈ (Baseβ€˜πΎ))) β†’ (((𝑃 ∨ 𝑄) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ (𝑅 ∨ 𝑆) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ↔ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
402, 36, 38, 21, 39syl13anc 1372 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (((𝑃 ∨ 𝑄) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ (𝑅 ∨ 𝑆) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ↔ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
4133, 40bitrd 278 . 2 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))) ↔ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
42 simp1l 1197 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)))
43 simp1r 1198 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅)))
44 simp2 1137 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š))
45 simp3 1138 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))))
4622, 13, 54atlem12b 38470 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ ((𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅)) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))
4742, 43, 44, 45, 46syl121anc 1375 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))
48473exp 1119 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) β†’ (((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))))
494, 13latj4rot 18439 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ)) ∧ (𝑆 ∈ (Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ))) β†’ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑃)) = ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)))
502, 10, 27, 30, 7, 49syl122anc 1379 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑃)) = ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)))
51503ad2ant1 1133 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑄 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑃)) = ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)))
521, 8, 253jca 1128 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴))
5328, 3, 113jca 1128 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴))
54 simpl3 1193 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴))
5552, 53, 543jca 1128 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)))
56553ad2ant1 1133 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑄 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)))
57 simpr 485 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅)))
5822, 13, 54noncolr3 38312 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑄 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)))
5934, 25, 28, 57, 58syl121anc 1375 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑄 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)))
60593ad2ant1 1133 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑄 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ (𝑄 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)))
61 simp2 1137 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑄 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ Β¬ 𝑄 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š))
62 simprlr 778 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))
63 simprrl 779 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ 𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))
6462, 63jca 512 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ (𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
65 simprrr 780 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))
66 simprll 777 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ 𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))
6764, 65, 66jca32 516 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))))
68673adant2 1131 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑄 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))))
6922, 13, 54atlem12b 38470 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ ((𝑄 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ Β¬ 𝑄 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) ∧ ((𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑃)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))
7056, 60, 61, 68, 69syl121anc 1375 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑄 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑃)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))
7151, 70eqtr3d 2774 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑄 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))
72713exp 1119 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (Β¬ 𝑄 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) β†’ (((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))))
7348, 72jaod 857 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∨ Β¬ 𝑄 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ (((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))))
744, 13latjcom 18396 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑅 ∨ 𝑆) ∨ (𝑃 ∨ 𝑄)))
752, 36, 38, 74syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑅 ∨ 𝑆) ∨ (𝑃 ∨ 𝑄)))
76753ad2ant1 1133 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑅 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑅 ∨ 𝑆) ∨ (𝑃 ∨ 𝑄)))
771, 25, 283jca 1128 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴))
783, 8, 113jca 1128 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴))
7977, 78, 543jca 1128 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)))
80793ad2ant1 1133 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑅 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)))
8122, 13, 54noncolr2 38313 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑅 β‰  𝑆 ∧ Β¬ 𝑃 ≀ (𝑅 ∨ 𝑆) ∧ Β¬ 𝑄 ≀ ((𝑅 ∨ 𝑆) ∨ 𝑃)))
8234, 25, 28, 57, 81syl121anc 1375 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑅 β‰  𝑆 ∧ Β¬ 𝑃 ≀ (𝑅 ∨ 𝑆) ∧ Β¬ 𝑄 ≀ ((𝑅 ∨ 𝑆) ∨ 𝑃)))
83823ad2ant1 1133 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑅 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ (𝑅 β‰  𝑆 ∧ Β¬ 𝑃 ≀ (𝑅 ∨ 𝑆) ∧ Β¬ 𝑄 ≀ ((𝑅 ∨ 𝑆) ∨ 𝑃)))
84 simp2 1137 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑅 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ Β¬ 𝑅 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š))
85 simprr 771 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
86 simprl 769 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ (𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
8785, 86jca 512 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))))
88873adant2 1131 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑅 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))))
8922, 13, 54atlem12b 38470 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ ((𝑅 β‰  𝑆 ∧ Β¬ 𝑃 ≀ (𝑅 ∨ 𝑆) ∧ Β¬ 𝑄 ≀ ((𝑅 ∨ 𝑆) ∨ 𝑃)) ∧ Β¬ 𝑅 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) ∧ ((𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑅 ∨ 𝑆) ∨ (𝑃 ∨ 𝑄)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))
9080, 83, 84, 88, 89syl121anc 1375 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑅 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑅 ∨ 𝑆) ∨ (𝑃 ∨ 𝑄)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))
9176, 90eqtrd 2772 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑅 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))
92913exp 1119 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (Β¬ 𝑅 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) β†’ (((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))))
934, 13latj4rot 18439 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ)) ∧ (𝑅 ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑆 ∨ 𝑃) ∨ (𝑄 ∨ 𝑅)))
942, 7, 10, 27, 30, 93syl122anc 1379 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑆 ∨ 𝑃) ∨ (𝑄 ∨ 𝑅)))
95943ad2ant1 1133 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑆 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑆 ∨ 𝑃) ∨ (𝑄 ∨ 𝑅)))
961, 28, 33jca 1128 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴))
978, 25, 113jca 1128 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴))
9896, 97, 543jca 1128 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)))
99983ad2ant1 1133 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑆 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)))
10022, 13, 54noncolr1 38314 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑆 β‰  𝑃 ∧ Β¬ 𝑄 ≀ (𝑆 ∨ 𝑃) ∧ Β¬ 𝑅 ≀ ((𝑆 ∨ 𝑃) ∨ 𝑄)))
10134, 25, 28, 57, 100syl121anc 1375 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑆 β‰  𝑃 ∧ Β¬ 𝑄 ≀ (𝑆 ∨ 𝑃) ∧ Β¬ 𝑅 ≀ ((𝑆 ∨ 𝑃) ∨ 𝑄)))
1021013ad2ant1 1133 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑆 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ (𝑆 β‰  𝑃 ∧ Β¬ 𝑄 ≀ (𝑆 ∨ 𝑃) ∧ Β¬ 𝑅 ≀ ((𝑆 ∨ 𝑃) ∨ 𝑄)))
103 simp2 1137 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑆 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ Β¬ 𝑆 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š))
10465, 66jca 512 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ (𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
105104, 62, 63jca32 516 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))))
1061053adant2 1131 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑆 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))))
10722, 13, 54atlem12b 38470 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ ((𝑆 β‰  𝑃 ∧ Β¬ 𝑄 ≀ (𝑆 ∨ 𝑃) ∧ Β¬ 𝑅 ≀ ((𝑆 ∨ 𝑃) ∨ 𝑄)) ∧ Β¬ 𝑆 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) ∧ ((𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑆 ∨ 𝑃) ∨ (𝑄 ∨ 𝑅)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))
10899, 102, 103, 106, 107syl121anc 1375 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑆 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑆 ∨ 𝑃) ∨ (𝑄 ∨ 𝑅)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))
10995, 108eqtrd 2772 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ Β¬ 𝑆 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))
1101093exp 1119 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (Β¬ 𝑆 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) β†’ (((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))))
11192, 110jaod 857 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((Β¬ 𝑅 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∨ Β¬ 𝑆 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ (((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))))
11225, 28, 123jca 1128 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴))
11316, 17jca 512 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴))
11422, 13, 54atlem3 38455 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) ∧ (𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∨ Β¬ 𝑄 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) ∨ (Β¬ 𝑅 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∨ Β¬ 𝑆 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š))))
11534, 112, 113, 57, 114syl31anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∨ Β¬ 𝑄 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) ∨ (Β¬ 𝑅 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∨ Β¬ 𝑆 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š))))
11673, 111, 115mpjaod 858 . 2 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
11741, 116sylbird 259 1 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  Latclat 18380  Atomscatm 38121  HLchlt 38208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-llines 38357  df-lplanes 38358  df-lvols 38359
This theorem is referenced by:  4at  38472
  Copyright terms: Public domain W3C validator