Proof of Theorem cdlemg46
| Step | Hyp | Ref
| Expression |
| 1 | | simpl1l 1225 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) ∧ (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL) |
| 2 | | simp1 1137 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 3 | | simp2r 1201 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → ℎ ∈ 𝑇) |
| 4 | | simp32 1211 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → ℎ ≠ ( I ↾ 𝐵)) |
| 5 | | cdlemg46.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
| 6 | | eqid 2737 |
. . . . . 6
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
| 7 | | cdlemg46.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
| 8 | | cdlemg46.t |
. . . . . 6
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 9 | | cdlemg46.r |
. . . . . 6
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 10 | 5, 6, 7, 8, 9 | trlnidat 40175 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) → (𝑅‘ℎ) ∈ (Atoms‘𝐾)) |
| 11 | 2, 3, 4, 10 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝑅‘ℎ) ∈ (Atoms‘𝐾)) |
| 12 | 11 | adantr 480 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) ∧ (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘ℎ) ∈ (Atoms‘𝐾)) |
| 13 | | simp2l 1200 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → 𝐹 ∈ 𝑇) |
| 14 | | simp31 1210 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → 𝐹 ≠ ( I ↾ 𝐵)) |
| 15 | 5, 6, 7, 8, 9 | trlnidat 40175 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘𝐹) ∈ (Atoms‘𝐾)) |
| 16 | 2, 13, 14, 15 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝑅‘𝐹) ∈ (Atoms‘𝐾)) |
| 17 | 16 | adantr 480 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) ∧ (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘𝐹) ∈ (Atoms‘𝐾)) |
| 18 | | simpl33 1257 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) ∧ (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘ℎ) ≠ (𝑅‘𝐹)) |
| 19 | | simpr 484 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) ∧ (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾)) |
| 20 | 7, 8 | ltrnco 40721 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → (ℎ ∘ 𝐹) ∈ 𝑇) |
| 21 | 2, 3, 13, 20 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (ℎ ∘ 𝐹) ∈ 𝑇) |
| 22 | 7, 8 | ltrncnv 40148 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ◡𝐹 ∈ 𝑇) |
| 23 | 2, 13, 22 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → ◡𝐹 ∈ 𝑇) |
| 24 | | eqid 2737 |
. . . . . . . 8
⊢
(le‘𝐾) =
(le‘𝐾) |
| 25 | | eqid 2737 |
. . . . . . . 8
⊢
(join‘𝐾) =
(join‘𝐾) |
| 26 | 24, 25, 7, 8, 9 | trlco 40729 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∘ 𝐹) ∈ 𝑇 ∧ ◡𝐹 ∈ 𝑇) → (𝑅‘((ℎ ∘ 𝐹) ∘ ◡𝐹))(le‘𝐾)((𝑅‘(ℎ ∘ 𝐹))(join‘𝐾)(𝑅‘◡𝐹))) |
| 27 | 2, 21, 23, 26 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝑅‘((ℎ ∘ 𝐹) ∘ ◡𝐹))(le‘𝐾)((𝑅‘(ℎ ∘ 𝐹))(join‘𝐾)(𝑅‘◡𝐹))) |
| 28 | | coass 6285 |
. . . . . . . 8
⊢ ((ℎ ∘ 𝐹) ∘ ◡𝐹) = (ℎ ∘ (𝐹 ∘ ◡𝐹)) |
| 29 | 5, 7, 8 | ltrn1o 40126 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
| 30 | 2, 13, 29 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → 𝐹:𝐵–1-1-onto→𝐵) |
| 31 | | f1ococnv2 6875 |
. . . . . . . . . . 11
⊢ (𝐹:𝐵–1-1-onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
| 32 | 30, 31 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
| 33 | 32 | coeq2d 5873 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (ℎ ∘ (𝐹 ∘ ◡𝐹)) = (ℎ ∘ ( I ↾ 𝐵))) |
| 34 | 5, 7, 8 | ltrn1o 40126 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇) → ℎ:𝐵–1-1-onto→𝐵) |
| 35 | 2, 3, 34 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → ℎ:𝐵–1-1-onto→𝐵) |
| 36 | | f1of 6848 |
. . . . . . . . . 10
⊢ (ℎ:𝐵–1-1-onto→𝐵 → ℎ:𝐵⟶𝐵) |
| 37 | | fcoi1 6782 |
. . . . . . . . . 10
⊢ (ℎ:𝐵⟶𝐵 → (ℎ ∘ ( I ↾ 𝐵)) = ℎ) |
| 38 | 35, 36, 37 | 3syl 18 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (ℎ ∘ ( I ↾ 𝐵)) = ℎ) |
| 39 | 33, 38 | eqtrd 2777 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (ℎ ∘ (𝐹 ∘ ◡𝐹)) = ℎ) |
| 40 | 28, 39 | eqtrid 2789 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → ((ℎ ∘ 𝐹) ∘ ◡𝐹) = ℎ) |
| 41 | 40 | fveq2d 6910 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝑅‘((ℎ ∘ 𝐹) ∘ ◡𝐹)) = (𝑅‘ℎ)) |
| 42 | 7, 8, 9 | trlcnv 40167 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘◡𝐹) = (𝑅‘𝐹)) |
| 43 | 2, 13, 42 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝑅‘◡𝐹) = (𝑅‘𝐹)) |
| 44 | 43 | oveq2d 7447 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → ((𝑅‘(ℎ ∘ 𝐹))(join‘𝐾)(𝑅‘◡𝐹)) = ((𝑅‘(ℎ ∘ 𝐹))(join‘𝐾)(𝑅‘𝐹))) |
| 45 | 27, 41, 44 | 3brtr3d 5174 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝑅‘ℎ)(le‘𝐾)((𝑅‘(ℎ ∘ 𝐹))(join‘𝐾)(𝑅‘𝐹))) |
| 46 | 45 | adantr 480 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) ∧ (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘ℎ)(le‘𝐾)((𝑅‘(ℎ ∘ 𝐹))(join‘𝐾)(𝑅‘𝐹))) |
| 47 | 24, 25, 6 | hlatlej2 39377 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅‘𝐹) ∈ (Atoms‘𝐾)) → (𝑅‘𝐹)(le‘𝐾)((𝑅‘(ℎ ∘ 𝐹))(join‘𝐾)(𝑅‘𝐹))) |
| 48 | 1, 19, 17, 47 | syl3anc 1373 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) ∧ (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘𝐹)(le‘𝐾)((𝑅‘(ℎ ∘ 𝐹))(join‘𝐾)(𝑅‘𝐹))) |
| 49 | 1 | hllatd 39365 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) ∧ (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾)) → 𝐾 ∈ Lat) |
| 50 | 5, 6 | atbase 39290 |
. . . . . 6
⊢ ((𝑅‘ℎ) ∈ (Atoms‘𝐾) → (𝑅‘ℎ) ∈ 𝐵) |
| 51 | 12, 50 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) ∧ (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘ℎ) ∈ 𝐵) |
| 52 | 5, 6 | atbase 39290 |
. . . . . 6
⊢ ((𝑅‘𝐹) ∈ (Atoms‘𝐾) → (𝑅‘𝐹) ∈ 𝐵) |
| 53 | 17, 52 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) ∧ (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘𝐹) ∈ 𝐵) |
| 54 | 5, 25, 6 | hlatjcl 39368 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅‘𝐹) ∈ (Atoms‘𝐾)) → ((𝑅‘(ℎ ∘ 𝐹))(join‘𝐾)(𝑅‘𝐹)) ∈ 𝐵) |
| 55 | 1, 19, 17, 54 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) ∧ (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾)) → ((𝑅‘(ℎ ∘ 𝐹))(join‘𝐾)(𝑅‘𝐹)) ∈ 𝐵) |
| 56 | 5, 24, 25 | latjle12 18495 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ ((𝑅‘ℎ) ∈ 𝐵 ∧ (𝑅‘𝐹) ∈ 𝐵 ∧ ((𝑅‘(ℎ ∘ 𝐹))(join‘𝐾)(𝑅‘𝐹)) ∈ 𝐵)) → (((𝑅‘ℎ)(le‘𝐾)((𝑅‘(ℎ ∘ 𝐹))(join‘𝐾)(𝑅‘𝐹)) ∧ (𝑅‘𝐹)(le‘𝐾)((𝑅‘(ℎ ∘ 𝐹))(join‘𝐾)(𝑅‘𝐹))) ↔ ((𝑅‘ℎ)(join‘𝐾)(𝑅‘𝐹))(le‘𝐾)((𝑅‘(ℎ ∘ 𝐹))(join‘𝐾)(𝑅‘𝐹)))) |
| 57 | 49, 51, 53, 55, 56 | syl13anc 1374 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) ∧ (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾)) → (((𝑅‘ℎ)(le‘𝐾)((𝑅‘(ℎ ∘ 𝐹))(join‘𝐾)(𝑅‘𝐹)) ∧ (𝑅‘𝐹)(le‘𝐾)((𝑅‘(ℎ ∘ 𝐹))(join‘𝐾)(𝑅‘𝐹))) ↔ ((𝑅‘ℎ)(join‘𝐾)(𝑅‘𝐹))(le‘𝐾)((𝑅‘(ℎ ∘ 𝐹))(join‘𝐾)(𝑅‘𝐹)))) |
| 58 | 46, 48, 57 | mpbi2and 712 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) ∧ (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾)) → ((𝑅‘ℎ)(join‘𝐾)(𝑅‘𝐹))(le‘𝐾)((𝑅‘(ℎ ∘ 𝐹))(join‘𝐾)(𝑅‘𝐹))) |
| 59 | 24, 25, 6 | 2atjlej 39481 |
. . 3
⊢ ((𝐾 ∈ HL ∧ ((𝑅‘ℎ) ∈ (Atoms‘𝐾) ∧ (𝑅‘𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅‘𝐹) ∈ (Atoms‘𝐾) ∧ ((𝑅‘ℎ)(join‘𝐾)(𝑅‘𝐹))(le‘𝐾)((𝑅‘(ℎ ∘ 𝐹))(join‘𝐾)(𝑅‘𝐹)))) → (𝑅‘(ℎ ∘ 𝐹)) ≠ (𝑅‘𝐹)) |
| 60 | 1, 12, 17, 18, 19, 17, 58, 59 | syl133anc 1395 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) ∧ (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(ℎ ∘ 𝐹)) ≠ (𝑅‘𝐹)) |
| 61 | | nelne2 3040 |
. . . 4
⊢ (((𝑅‘𝐹) ∈ (Atoms‘𝐾) ∧ ¬ (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘𝐹) ≠ (𝑅‘(ℎ ∘ 𝐹))) |
| 62 | 61 | necomd 2996 |
. . 3
⊢ (((𝑅‘𝐹) ∈ (Atoms‘𝐾) ∧ ¬ (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(ℎ ∘ 𝐹)) ≠ (𝑅‘𝐹)) |
| 63 | 16, 62 | sylan 580 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) ∧ ¬ (𝑅‘(ℎ ∘ 𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(ℎ ∘ 𝐹)) ≠ (𝑅‘𝐹)) |
| 64 | 60, 63 | pm2.61dan 813 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝑅‘(ℎ ∘ 𝐹)) ≠ (𝑅‘𝐹)) |