Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg46 Structured version   Visualization version   GIF version

Theorem cdlemg46 40754
Description: Part of proof of Lemma G of [Crawley] p. 116, seventh line of third paragraph on p. 117: "hf and f have different traces." (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
cdlemg46.b 𝐵 = (Base‘𝐾)
cdlemg46.h 𝐻 = (LHyp‘𝐾)
cdlemg46.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg46.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg46 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
Distinct variable groups:   ,𝐹   ,𝐻   ,𝐾   𝑅,   𝑇,   ,𝑊
Allowed substitution hint:   𝐵()

Proof of Theorem cdlemg46
StepHypRef Expression
1 simpl1l 1225 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
2 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp2r 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝑇)
4 simp32 1211 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ≠ ( I ↾ 𝐵))
5 cdlemg46.b . . . . . 6 𝐵 = (Base‘𝐾)
6 eqid 2735 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
7 cdlemg46.h . . . . . 6 𝐻 = (LHyp‘𝐾)
8 cdlemg46.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 cdlemg46.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
105, 6, 7, 8, 9trlnidat 40192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇 ≠ ( I ↾ 𝐵)) → (𝑅) ∈ (Atoms‘𝐾))
112, 3, 4, 10syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅) ∈ (Atoms‘𝐾))
1211adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅) ∈ (Atoms‘𝐾))
13 simp2l 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹𝑇)
14 simp31 1210 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹 ≠ ( I ↾ 𝐵))
155, 6, 7, 8, 9trlnidat 40192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
162, 13, 14, 15syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅𝐹) ∈ (Atoms‘𝐾))
1716adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
18 simpl33 1257 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅) ≠ (𝑅𝐹))
19 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(𝐹)) ∈ (Atoms‘𝐾))
207, 8ltrnco 40738 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐹𝑇) → (𝐹) ∈ 𝑇)
212, 3, 13, 20syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹) ∈ 𝑇)
227, 8ltrncnv 40165 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
232, 13, 22syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹𝑇)
24 eqid 2735 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
25 eqid 2735 . . . . . . . 8 (join‘𝐾) = (join‘𝐾)
2624, 25, 7, 8, 9trlco 40746 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹) ∈ 𝑇𝐹𝑇) → (𝑅‘((𝐹) ∘ 𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
272, 21, 23, 26syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘((𝐹) ∘ 𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
28 coass 6254 . . . . . . . 8 ((𝐹) ∘ 𝐹) = ( ∘ (𝐹𝐹))
295, 7, 8ltrn1o 40143 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
302, 13, 29syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹:𝐵1-1-onto𝐵)
31 f1ococnv2 6845 . . . . . . . . . . 11 (𝐹:𝐵1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
3230, 31syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐹) = ( I ↾ 𝐵))
3332coeq2d 5842 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ (𝐹𝐹)) = ( ∘ ( I ↾ 𝐵)))
345, 7, 8ltrn1o 40143 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇) → :𝐵1-1-onto𝐵)
352, 3, 34syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → :𝐵1-1-onto𝐵)
36 f1of 6818 . . . . . . . . . 10 (:𝐵1-1-onto𝐵:𝐵𝐵)
37 fcoi1 6752 . . . . . . . . . 10 (:𝐵𝐵 → ( ∘ ( I ↾ 𝐵)) = )
3835, 36, 373syl 18 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ ( I ↾ 𝐵)) = )
3933, 38eqtrd 2770 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ (𝐹𝐹)) = )
4028, 39eqtrid 2782 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝐹) ∘ 𝐹) = )
4140fveq2d 6880 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘((𝐹) ∘ 𝐹)) = (𝑅))
427, 8, 9trlcnv 40184 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
432, 13, 42syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅𝐹) = (𝑅𝐹))
4443oveq2d 7421 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) = ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
4527, 41, 443brtr3d 5150 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
4645adantr 480 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
4724, 25, 6hlatlej2 39394 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝐹)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
481, 19, 17, 47syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅𝐹)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
491hllatd 39382 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → 𝐾 ∈ Lat)
505, 6atbase 39307 . . . . . 6 ((𝑅) ∈ (Atoms‘𝐾) → (𝑅) ∈ 𝐵)
5112, 50syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅) ∈ 𝐵)
525, 6atbase 39307 . . . . . 6 ((𝑅𝐹) ∈ (Atoms‘𝐾) → (𝑅𝐹) ∈ 𝐵)
5317, 52syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ∈ 𝐵)
545, 25, 6hlatjcl 39385 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∈ 𝐵)
551, 19, 17, 54syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∈ 𝐵)
565, 24, 25latjle12 18460 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑅) ∈ 𝐵 ∧ (𝑅𝐹) ∈ 𝐵 ∧ ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∈ 𝐵)) → (((𝑅)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∧ (𝑅𝐹)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹))) ↔ ((𝑅)(join‘𝐾)(𝑅𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹))))
5749, 51, 53, 55, 56syl13anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (((𝑅)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∧ (𝑅𝐹)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹))) ↔ ((𝑅)(join‘𝐾)(𝑅𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹))))
5846, 48, 57mpbi2and 712 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → ((𝑅)(join‘𝐾)(𝑅𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
5924, 25, 62atjlej 39498 . . 3 ((𝐾 ∈ HL ∧ ((𝑅) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅) ≠ (𝑅𝐹)) ∧ ((𝑅‘(𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ ((𝑅)(join‘𝐾)(𝑅𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
601, 12, 17, 18, 19, 17, 58, 59syl133anc 1395 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
61 nelne2 3030 . . . 4 (((𝑅𝐹) ∈ (Atoms‘𝐾) ∧ ¬ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ≠ (𝑅‘(𝐹)))
6261necomd 2987 . . 3 (((𝑅𝐹) ∈ (Atoms‘𝐾) ∧ ¬ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
6316, 62sylan 580 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ ¬ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
6460, 63pm2.61dan 812 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119   I cid 5547  ccnv 5653  cres 5656  ccom 5658  wf 6527  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  joincjn 18323  Latclat 18441  Atomscatm 39281  HLchlt 39368  LHypclh 40003  LTrncltrn 40120  trLctrl 40177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-riotaBAD 38971
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-undef 8272  df-map 8842  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517  df-lplanes 39518  df-lvols 39519  df-lines 39520  df-psubsp 39522  df-pmap 39523  df-padd 39815  df-lhyp 40007  df-laut 40008  df-ldil 40123  df-ltrn 40124  df-trl 40178
This theorem is referenced by:  cdlemg47  40755
  Copyright terms: Public domain W3C validator