Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg46 Structured version   Visualization version   GIF version

Theorem cdlemg46 40774
Description: Part of proof of Lemma G of [Crawley] p. 116, seventh line of third paragraph on p. 117: "hf and f have different traces." (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
cdlemg46.b 𝐵 = (Base‘𝐾)
cdlemg46.h 𝐻 = (LHyp‘𝐾)
cdlemg46.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg46.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg46 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
Distinct variable groups:   ,𝐹   ,𝐻   ,𝐾   𝑅,   𝑇,   ,𝑊
Allowed substitution hint:   𝐵()

Proof of Theorem cdlemg46
StepHypRef Expression
1 simpl1l 1225 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
2 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp2r 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝑇)
4 simp32 1211 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ≠ ( I ↾ 𝐵))
5 cdlemg46.b . . . . . 6 𝐵 = (Base‘𝐾)
6 eqid 2731 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
7 cdlemg46.h . . . . . 6 𝐻 = (LHyp‘𝐾)
8 cdlemg46.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 cdlemg46.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
105, 6, 7, 8, 9trlnidat 40212 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇 ≠ ( I ↾ 𝐵)) → (𝑅) ∈ (Atoms‘𝐾))
112, 3, 4, 10syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅) ∈ (Atoms‘𝐾))
1211adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅) ∈ (Atoms‘𝐾))
13 simp2l 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹𝑇)
14 simp31 1210 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹 ≠ ( I ↾ 𝐵))
155, 6, 7, 8, 9trlnidat 40212 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
162, 13, 14, 15syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅𝐹) ∈ (Atoms‘𝐾))
1716adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
18 simpl33 1257 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅) ≠ (𝑅𝐹))
19 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(𝐹)) ∈ (Atoms‘𝐾))
207, 8ltrnco 40758 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐹𝑇) → (𝐹) ∈ 𝑇)
212, 3, 13, 20syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹) ∈ 𝑇)
227, 8ltrncnv 40185 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
232, 13, 22syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹𝑇)
24 eqid 2731 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
25 eqid 2731 . . . . . . . 8 (join‘𝐾) = (join‘𝐾)
2624, 25, 7, 8, 9trlco 40766 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹) ∈ 𝑇𝐹𝑇) → (𝑅‘((𝐹) ∘ 𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
272, 21, 23, 26syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘((𝐹) ∘ 𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
28 coass 6208 . . . . . . . 8 ((𝐹) ∘ 𝐹) = ( ∘ (𝐹𝐹))
295, 7, 8ltrn1o 40163 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
302, 13, 29syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹:𝐵1-1-onto𝐵)
31 f1ococnv2 6785 . . . . . . . . . . 11 (𝐹:𝐵1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
3230, 31syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐹) = ( I ↾ 𝐵))
3332coeq2d 5797 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ (𝐹𝐹)) = ( ∘ ( I ↾ 𝐵)))
345, 7, 8ltrn1o 40163 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇) → :𝐵1-1-onto𝐵)
352, 3, 34syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → :𝐵1-1-onto𝐵)
36 f1of 6758 . . . . . . . . . 10 (:𝐵1-1-onto𝐵:𝐵𝐵)
37 fcoi1 6692 . . . . . . . . . 10 (:𝐵𝐵 → ( ∘ ( I ↾ 𝐵)) = )
3835, 36, 373syl 18 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ ( I ↾ 𝐵)) = )
3933, 38eqtrd 2766 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ (𝐹𝐹)) = )
4028, 39eqtrid 2778 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝐹) ∘ 𝐹) = )
4140fveq2d 6821 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘((𝐹) ∘ 𝐹)) = (𝑅))
427, 8, 9trlcnv 40204 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
432, 13, 42syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅𝐹) = (𝑅𝐹))
4443oveq2d 7357 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) = ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
4527, 41, 443brtr3d 5117 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
4645adantr 480 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
4724, 25, 6hlatlej2 39415 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝐹)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
481, 19, 17, 47syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅𝐹)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
491hllatd 39403 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → 𝐾 ∈ Lat)
505, 6atbase 39328 . . . . . 6 ((𝑅) ∈ (Atoms‘𝐾) → (𝑅) ∈ 𝐵)
5112, 50syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅) ∈ 𝐵)
525, 6atbase 39328 . . . . . 6 ((𝑅𝐹) ∈ (Atoms‘𝐾) → (𝑅𝐹) ∈ 𝐵)
5317, 52syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ∈ 𝐵)
545, 25, 6hlatjcl 39406 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∈ 𝐵)
551, 19, 17, 54syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∈ 𝐵)
565, 24, 25latjle12 18351 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑅) ∈ 𝐵 ∧ (𝑅𝐹) ∈ 𝐵 ∧ ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∈ 𝐵)) → (((𝑅)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∧ (𝑅𝐹)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹))) ↔ ((𝑅)(join‘𝐾)(𝑅𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹))))
5749, 51, 53, 55, 56syl13anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (((𝑅)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∧ (𝑅𝐹)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹))) ↔ ((𝑅)(join‘𝐾)(𝑅𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹))))
5846, 48, 57mpbi2and 712 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → ((𝑅)(join‘𝐾)(𝑅𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
5924, 25, 62atjlej 39518 . . 3 ((𝐾 ∈ HL ∧ ((𝑅) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅) ≠ (𝑅𝐹)) ∧ ((𝑅‘(𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ ((𝑅)(join‘𝐾)(𝑅𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
601, 12, 17, 18, 19, 17, 58, 59syl133anc 1395 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
61 nelne2 3026 . . . 4 (((𝑅𝐹) ∈ (Atoms‘𝐾) ∧ ¬ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ≠ (𝑅‘(𝐹)))
6261necomd 2983 . . 3 (((𝑅𝐹) ∈ (Atoms‘𝐾) ∧ ¬ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
6316, 62sylan 580 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ ¬ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
6460, 63pm2.61dan 812 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5086   I cid 5505  ccnv 5610  cres 5613  ccom 5615  wf 6472  1-1-ontowf1o 6475  cfv 6476  (class class class)co 7341  Basecbs 17115  lecple 17163  joincjn 18212  Latclat 18332  Atomscatm 39302  HLchlt 39389  LHypclh 40023  LTrncltrn 40140  trLctrl 40197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-riotaBAD 38992
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-undef 8198  df-map 8747  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-p1 18325  df-lat 18333  df-clat 18400  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-llines 39537  df-lplanes 39538  df-lvols 39539  df-lines 39540  df-psubsp 39542  df-pmap 39543  df-padd 39835  df-lhyp 40027  df-laut 40028  df-ldil 40143  df-ltrn 40144  df-trl 40198
This theorem is referenced by:  cdlemg47  40775
  Copyright terms: Public domain W3C validator